References

ON THE SIRS EPIDEMIC MODEL WITH FREE BOUNDARIES


[1] V. Capasso, Mathematical Structures of Epidemic Systems, Lectures Notes in Biomathematics 97, 2nd Edition, Springer-Verlag, 2008.

[2] W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society A: Mathematical, Physical, and Engineering Sciences 115(772) (1927), 700-721.
DOI: https://doi.org/10.1098/rspa.1927.0118

[3] S. M. O’Regan, Thomas C. Kelly, Andrei Korobeinikov, Michael J. A. O’Callaghan and Alexei V. Pokrovskii, Lyapunov functions for SIR and SIRS epidemic models, Applied Mathematics Letters 23(4) (2010), 446-448.
DOI: https://doi.org/10.1016/j.aml.2009.11.014

[4] Alberto d’Onofri, Piero Manfredi and Ernesto Salinelli, Lyapunov stability of an SIRS epidemic model with varying population, Arxiv:1812.10676v1 [math.DS]27 Dec 2018.

[5] V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Mathematical Biosciences 42(1-2) (1978), 43-61.
DOI: https://doi.org/10.1016/0025-5564(78)90006-8

[6] J. Chen, An SIRS epidemic model, Applied Mathematics: A Journal of Chinese Universities 19(1) (2004), 101-108.
DOI: https://doi.org/10.1007/s11766-004-0027-8

[7] J. Li, Y. Yang, Y. Xiao and S. Liu, A class of Lyapunov functions and the global stability of some epidemic models with nonlinear incidence, Journal of Applied Analysis and Computation 6(1) (2016), 38-46.
DOI: https://doi.org/10.11948/2016004

[8] Ting Li, Fengqin Zhang, Hanwu Liu and Yuming Chen, Threshold dynamics of an SIRS model with nonlinear incidence rate and transfer from infectious to susceptible, Applied Mathematics Letters 70 (2017), 52-57.
DOI: http://dx.doi.org/10.1016/j.aml.2017.03.005

[9] O. Diekmann and J. A. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, John Wiley and Sons, Chichester, 2000.

[10] J. M. Heffernan, R. J. Smith and L. M. Wahl, Perspectives on the basic reproductive ratio, Journal of the Royal Society Interface 2(4) (2005), 281-293.
DOI: https://doi.org/10.1098/rsif.2005.0042

[11] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences 180(1-2) (2002), 29-48.
DOI: https://doi.org/10.1016/S0025-5564(02)00108-6

[12] O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, Journal of the Royal Society Interface 7(47) (2009), 873-885.
DOI: https://doi.org/10.1098/rsif.2009.0386

[13] P. van den Driessche, Reproduction numbers of infectious disease models, Infectious Disease Modelling 2(3) (2017), 288-303.
DOI: https://doi.org/10.1016/j.idm.2017.06.002

[14] A. Ducrot, M. Langlais and P. Magal, Qualitative analysis and travelling wave solutions for the SI model with vertical transmission, Communications on Pure and Applied Analysis 11(1) (2012), 97-113.
DOI: https://doi.org/10.3934/cpaa.2012.11.97

[15] A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured epidemic model with external supplies, Nonlinearity 24(10) (2011), 2891-2911.
DOI: https://doi.org/10.1088/0951-7715/24/10/012

[16] W. Z. Huang, M. Han and K. Liu, Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Mathematical Biosciences & Engineering 7(1) (2011), 51-66.
DOI: https://doi.org/10.3934/mbe.2010.7.51

[17] J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd Edition, Springer, New York, 2003.
DOI: https://doi.org/10.1007/b98869

[18] J. F. Cao, Wan-Tong Li, Jie Wang and Fei-Ying Yang, A free boundary problem of a diffusive SIRS model with nonlinear incidence, Zeitschrift für Angewandte Mathematik und Physik 68(2) (2017); Article 39.
DOI: https://doi.org/10.1007/s00033-017-0786-8

[19] Q. Gan, R. Xu and P. Yang, Travelling waves of a delayed SIRS epidemic model with spatial diffusion, Nonlinear Analysis: Real World Applications 12(1) (2011), 52-68.
DOI: https://doi.org/10.1016/j.nonrwa.2010.05.035

[20] X. Chen and A. Friedman, A free boundary problem arising in a model of wound healing, SIAM Journal on Mathematical Analysis 32(4) (2000), 778-800.
DPO: https://doi.org/10.1137/S0036141099351693

[21] X. Chen and A. Friedman, A free boundary problem for an elliptic-hyperbolic system: An application to tumor growth, SIAM Journal on Mathematical Analysis 35(4) (2003), 974-986.
DOI: https://doi.org/10.1137/S0036141002418388

[22] K. Kim, Z. Lin and Q. Zhang, An SIR epidemic model with free boundary, Nonlinear Analysis: Real World Applications 14(5) (2013), 1992-2001.
DOI: https://doi.org/10.1016/j.nonrwa.2013.02.003

[23] J. Ge, K. Kim, Z. Lin and H. Zhu, A SIS reactiondiffusionadvection model in a low-risk and high-risk domain, Journal of Differential Equations 259(10) (2015), 5486-5509.
DOI: https://doi.org/10.1016/j.jde.2015.06.035

[24] Inkyung Ahn, Seunghyeon Baek and Zhigui Lin, The spreading fronts of an infective environment in a manenvironmentman epidemic model, Applied Mathematical Modelling 40(15-16) (2016), 7082-7101.
DOI: https://doi.org/10.1016/j.apm.2016.02.038

[25] M. Zhao, Wan-Tong Li and Yang Zhang, Dynamics of an epidemic model with advection and free boundaries, Mathematical Biosciences and Engineering 16(5) (2019), 5991-6014.
DOI: https://doi.org/10.3934/mbe.2019300

[26] Kehua Li, Jiemei Li and Wei Wang, Epidemic reaction-diffusion systems with two types of boundary conditions, Electronic Journal of Differential Equations 2018(170) (2018), 1-21.

[27] Carlos Castillo-Chavez, Jorge X. Velasco-Hernandez and Samuel Fridman, Modelling Contact Structures in Biology, In: Frontiers of Theoretical Biology, Lecture Notes in Biomathematics, Spring-Verlag, New York, 1994.
DOI: https://doi.org/10.1007/978-3-642-50124-1_27

[28] Z. Feng, C. Castilla-Chavez and A. Capurro, A model for Tuberculosis with exogenous reinfection, Theoretical Population Biology 57(3) (2000), 235-247.
DOI: https://doi.org/10.1006/tpbi.2000.1451

[29] C. Tian and S. Ruan, A free boundary problem of Aedes aegypti mosquito invasion, Applied Mathematical Modelling 46 (2017), 203-217.
DOI: https://doi.org/10.1016/j.apm.2017.01.050

[30] J. O. Takhirov, A free boundary problem for a reaction-diffusion equation appearing in biology, Indian Journal of Pure and Applied Mathematics 50(1) (2019), 95-112.
DOI: https://doi.org/10.1007/s13226-019-0309-8

[31] S. N. Kruzhkov, Nonlinear parabolic equations with two independent variable, Transaction of the Moscow Mathematical Society 16 (1967), 329-346.

[32] O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society: Translations of Mathematical Monographs, Vol. 23, Providence, RI, 1968.
DOI: https://doi.org/10.1090/mmono/023

[33] Zh. O. Takhirov and M. S. Rasulov, Problem with free boundary for systems of equations of reaction-diffusion type, Ukrainian Mathematical Journal 69(12) (2018), 1968-1980.
DOI: https://doi.org/10.1007/s11253-018-1481-4

[34] A. Friedman, Partial Differential Equations of Parabolic Type, Courier Dover Publications, 2008.

[35] Y. Du and Zh. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete and Continuous Dynamical Systems: Series B 19(10) (2014), 3105-3132.
DOI: https://doi.org/10.3934/DCDSB.2014.19.3105