[1] V. Capasso, Mathematical Structures of Epidemic Systems, Lectures
Notes in Biomathematics 97, 2nd Edition, Springer-Verlag, 2008.
[2] W. O. Kermack and A. G. McKendrick, A contribution to the
mathematical theory of epidemics, Proceedings of the Royal Society A:
Mathematical, Physical, and Engineering Sciences 115(772) (1927),
700-721.
DOI: https://doi.org/10.1098/rspa.1927.0118
[3] S. M. O’Regan, Thomas C. Kelly, Andrei Korobeinikov,
Michael J. A. O’Callaghan and Alexei V. Pokrovskii, Lyapunov
functions for SIR and SIRS epidemic models, Applied Mathematics
Letters 23(4) (2010), 446-448.
DOI: https://doi.org/10.1016/j.aml.2009.11.014
[4] Alberto d’Onofri, Piero Manfredi and Ernesto Salinelli,
Lyapunov stability of an SIRS epidemic model with varying population,
Arxiv:1812.10676v1 [math.DS]27 Dec 2018.
[5] V. Capasso and G. Serio, A generalization of the
Kermack-McKendrick deterministic epidemic model, Mathematical
Biosciences 42(1-2) (1978), 43-61.
DOI: https://doi.org/10.1016/0025-5564(78)90006-8
[6] J. Chen, An SIRS epidemic model, Applied Mathematics: A Journal of
Chinese Universities 19(1) (2004), 101-108.
DOI: https://doi.org/10.1007/s11766-004-0027-8
[7] J. Li, Y. Yang, Y. Xiao and S. Liu, A class of Lyapunov functions
and the global stability of some epidemic models with nonlinear
incidence, Journal of Applied Analysis and Computation 6(1) (2016),
38-46.
DOI: https://doi.org/10.11948/2016004
[8] Ting Li, Fengqin Zhang, Hanwu Liu and Yuming Chen, Threshold
dynamics of an SIRS model with nonlinear incidence rate and transfer
from infectious to susceptible, Applied Mathematics Letters 70 (2017),
52-57.
DOI: http://dx.doi.org/10.1016/j.aml.2017.03.005
[9] O. Diekmann and J. A. Heesterbeek, Mathematical Epidemiology of
Infectious Diseases: Model Building, Analysis and Interpretation, John
Wiley and Sons, Chichester, 2000.
[10] J. M. Heffernan, R. J. Smith and L. M. Wahl, Perspectives on the
basic reproductive ratio, Journal of the Royal Society Interface 2(4)
(2005), 281-293.
DOI: https://doi.org/10.1098/rsif.2005.0042
[11] P. van den Driessche and J. Watmough, Reproduction numbers and
sub-threshold endemic equilibria for compartmental models of disease
transmission, Mathematical Biosciences 180(1-2) (2002), 29-48.
DOI: https://doi.org/10.1016/S0025-5564(02)00108-6
[12] O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The
construction of next-generation matrices for compartmental epidemic
models, Journal of the Royal Society Interface 7(47) (2009),
873-885.
DOI: https://doi.org/10.1098/rsif.2009.0386
[13] P. van den Driessche, Reproduction numbers of infectious disease
models, Infectious Disease Modelling 2(3) (2017), 288-303.
DOI: https://doi.org/10.1016/j.idm.2017.06.002
[14] A. Ducrot, M. Langlais and P. Magal, Qualitative analysis and
travelling wave solutions for the SI model with vertical transmission,
Communications on Pure and Applied Analysis 11(1) (2012), 97-113.
DOI: https://doi.org/10.3934/cpaa.2012.11.97
[15] A. Ducrot and P. Magal, Travelling wave solutions for an
infection-age structured epidemic model with external supplies,
Nonlinearity 24(10) (2011), 2891-2911.
DOI: https://doi.org/10.1088/0951-7715/24/10/012
[16] W. Z. Huang, M. Han and K. Liu, Dynamics of an SIS
reaction-diffusion epidemic model for disease transmission,
Mathematical Biosciences & Engineering 7(1) (2011), 51-66.
DOI: https://doi.org/10.3934/mbe.2010.7.51
[17] J. D. Murray, Mathematical Biology II: Spatial Models and
Biomedical Applications, 3rd Edition, Springer, New York, 2003.
DOI: https://doi.org/10.1007/b98869
[18] J. F. Cao, Wan-Tong Li, Jie Wang and Fei-Ying Yang, A free
boundary problem of a diffusive SIRS model with nonlinear incidence,
Zeitschrift für Angewandte Mathematik und Physik 68(2) (2017);
Article 39.
DOI: https://doi.org/10.1007/s00033-017-0786-8
[19] Q. Gan, R. Xu and P. Yang, Travelling waves of a delayed SIRS
epidemic model with spatial diffusion, Nonlinear Analysis: Real World
Applications 12(1) (2011), 52-68.
DOI: https://doi.org/10.1016/j.nonrwa.2010.05.035
[20] X. Chen and A. Friedman, A free boundary problem arising in a
model of wound healing, SIAM Journal on Mathematical Analysis 32(4)
(2000), 778-800.
DPO: https://doi.org/10.1137/S0036141099351693
[21] X. Chen and A. Friedman, A free boundary problem for an
elliptic-hyperbolic system: An application to tumor growth, SIAM
Journal on Mathematical Analysis 35(4) (2003), 974-986.
DOI: https://doi.org/10.1137/S0036141002418388
[22] K. Kim, Z. Lin and Q. Zhang, An SIR epidemic model with free
boundary, Nonlinear Analysis: Real World Applications 14(5) (2013),
1992-2001.
DOI: https://doi.org/10.1016/j.nonrwa.2013.02.003
[23] J. Ge, K. Kim, Z. Lin and H. Zhu, A SIS
reactiondiffusionadvection model in a low-risk and
high-risk domain, Journal of Differential Equations 259(10) (2015),
5486-5509.
DOI: https://doi.org/10.1016/j.jde.2015.06.035
[24] Inkyung Ahn, Seunghyeon Baek and Zhigui Lin, The spreading fronts
of an infective environment in a manenvironmentman
epidemic model, Applied Mathematical Modelling 40(15-16) (2016),
7082-7101.
DOI: https://doi.org/10.1016/j.apm.2016.02.038
[25] M. Zhao, Wan-Tong Li and Yang Zhang, Dynamics of an epidemic
model with advection and free boundaries, Mathematical Biosciences and
Engineering 16(5) (2019), 5991-6014.
DOI: https://doi.org/10.3934/mbe.2019300
[26] Kehua Li, Jiemei Li and Wei Wang, Epidemic reaction-diffusion
systems with two types of boundary conditions, Electronic Journal of
Differential Equations 2018(170) (2018), 1-21.
[27] Carlos Castillo-Chavez, Jorge X. Velasco-Hernandez and Samuel
Fridman, Modelling Contact Structures in Biology, In: Frontiers of
Theoretical Biology, Lecture Notes in Biomathematics, Spring-Verlag,
New York, 1994.
DOI: https://doi.org/10.1007/978-3-642-50124-1_27
[28] Z. Feng, C. Castilla-Chavez and A. Capurro, A model for
Tuberculosis with exogenous reinfection, Theoretical Population
Biology 57(3) (2000), 235-247.
DOI: https://doi.org/10.1006/tpbi.2000.1451
[29] C. Tian and S. Ruan, A free boundary problem of Aedes aegypti
mosquito invasion, Applied Mathematical Modelling 46 (2017),
203-217.
DOI: https://doi.org/10.1016/j.apm.2017.01.050
[30] J. O. Takhirov, A free boundary problem for a reaction-diffusion
equation appearing in biology, Indian Journal of Pure and Applied
Mathematics 50(1) (2019), 95-112.
DOI: https://doi.org/10.1007/s13226-019-0309-8
[31] S. N. Kruzhkov, Nonlinear parabolic equations with two
independent variable, Transaction of the Moscow Mathematical Society
16 (1967), 329-346.
[32] O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural’ceva,
Linear and Quasi-linear Equations of Parabolic Type, American
Mathematical Society: Translations of Mathematical Monographs, Vol.
23, Providence, RI, 1968.
DOI: https://doi.org/10.1090/mmono/023
[33] Zh. O. Takhirov and M. S. Rasulov, Problem with free boundary for
systems of equations of reaction-diffusion type, Ukrainian
Mathematical Journal 69(12) (2018), 1968-1980.
DOI: https://doi.org/10.1007/s11253-018-1481-4
[34] A. Friedman, Partial Differential Equations of Parabolic Type,
Courier Dover Publications, 2008.
[35] Y. Du and Zh. Lin, The diffusive competition model with a free
boundary: Invasion of a superior or inferior competitor, Discrete and
Continuous Dynamical Systems: Series B 19(10) (2014), 3105-3132.
DOI: https://doi.org/10.3934/DCDSB.2014.19.3105