[1] Y.-M. Chu, X.-M. Zhang and G.-D. Wang, The Schur geometrical
convexity of the extended mean values, Journal of Convex Analysis
15(4) (2008), 707-718.
[2] Y.-M. Chu and Y.-P. Lv, The Schur harmonic convexity of the Hamy
symmetric function and its applications, Journal of Inequalities and
Applications (2009); Article ID 838529, 10 pages.
DOI: https://doi.org/10.1155/2009/838529
[3] Y. M. Chu and T. C. Sun, The Schur harmonic convexity for a class
of symmetric functions, Acta Mathematica Scientia 30(5) (2010),
1501-1506.
DOI: https://doi.org/10.1016/S0252-9602(10)60142-7
[4] Y.-M. Chu, G.-D.Wang and X.-H. Zhang, The Schur multiplicative and
harmonic convexities of the complete symmetric function, Mathematische
Nachrichten 284(5-6) (2011), 653-663.
DOI: https://doi.org/10.1002/mana.200810197
[5] K.-Z. Guan, Schur-convexity of the complete symmetric function,
Mathematical Inequalities & Applications 9(4) (2006), 567-576.
DOI: https://doi.org/10.7153/mia-09-52
[6] A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of
Majorization and its Application, Second Edition, Springer, New York,
2011.
DOI: https://doi.org/10.1007/978-0-387-68276-1
[7] H. Mei, C.-L. Bai and H. Man, Extension of an Inequality Guess,
Journal of Inner Mongolia University for Nationalities 21(2) (2006),
127-129. (in Chinese)
[8] Z.-H. Shao, The Schur-geometrical convexity and Schur-harmonic
convexity for a class of symmetric functions, Mathematics in Practice
and Theory 42(16) (2012), 199-206. (in Chinese)
[9] T.-C. Sun, Y.-P. Lv and Y.-M. Chu, Schur multiplicative and
harmonic convexities of generalized Heronian mean in n variables and
their applications, International Journal of Pure and Applied
Mathematics 55(1) (2009), 25-33.
[10] B.-Y. Wang, Foundations of Majorization Inequalities, Beijing
Normal University Press, Beijing, 1990. (in Chinese)
[11] X.-M. Zhang, Geometrically Convex Functions, An’hui
University Press, Hefei, 2004. (in Chinese)