References

CHARACTERIZING PUISEUX MONOID DOMAINS WITH BOUNDED FACTORIZATION


[1] D. D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains, Journal of Pure and Applied Algebra 69(1) (1990), 1-19.
DOI: https://doi.org/10.1016/0022-4049(90)90074-R

[2] D. D. Anderson and J. R. Juett, Long length functions, Journal of Algebra 426 (2015), 327-343.
DOI: https://doi.org/10.1016/j.jalgebra.2014.12.016

[3] S. T. Chapman, F. Gotti and M. Gotti, A survey on the atomicity of Puiseux monoids,
Available on arXiv: https://arxiv.org/pdf/1908.09227.pdf

[4] J. Coykendall and F. Gotti, On the atomicity of monoid algebras, arXiv: 1906.11138 [math. AC].

[5] J. Coykendall and B. Mammenga, An embedding theorem, Journal of Algebra, 325(1) (2011), 177-185.
DOI: https://doi.org/10.1016/j.jalgebra.2010.08.026

[6] R. Gilmer, Commutative Semigroup Rings, The University of Chicago Press, Chicago, 1984.

[7] R. Gilmer, Property E in commutative monoid rings, group and semi-group rings (G. Karpilovsky, Editor), Elsevier Science Publishers, B. V. (North-Holland) (1986), 13-18.

[8] R. Gipson and H. Kulosman, Atomic and AP semigroup rings where is a submonoid of the additive monoid of nonnegative rational numbers, International Electronic Journal of Algebra 22(22) (2017), 133-146.
DOI: https://doi.org/10.24330/ieja.325939

[9] R. Gipson and H. Kulosman, For which additive submonoids of nonnegative rationals is AP?, preprint.

[10] F. Gotti, The elasticity of Puiseux monoids, arXiv:1703.04207 [math.AC].

[11] F. Gotti, Irreducibility and factorizations in monoid rings, arXiv:1905.07168 [math. AC].

[12] F. Gotti, On the atomic structure of Puiseux monoids, Journal of Algebra and its Applications 16(7) (2017); Article 1750126.
DOI: https://doi.org/10.1142/S0219498817501262

[13] I. Kaplansky, Commutative Rings, Revised Edition, The University of Chicago Press, Chicago and London, 1974.

[14] H. Kim, Factorization in monoid domains, Communications in Algebra 29(5) (2001), 1853-1869.
DOI: https://doi.org/10.1081/AGB-100002153

[15] H. Kulosman, A new simple example of an atomic domain which is not ACCP, Advances in Algebra 12(1) (2019), 1-7.

[16] D. G. Northcott, Lessons on Rings, Modules and Multiplicities, Cambridge University Press, Cambridge, 1968.
DOI: https://doi.org/10.1017/CBO9780511565922