References

EXISTENCE AND CONTINUOUS DEPENDENCE OF THE LOCAL SOLUTION OF NON-HOMOGENEOUS KDV-K-S EQUATION IN PERIODIC SOBOLEV SPACES


[1] H. A. Biagioni, J. L. Bona, R. Iorio and M. Scialom, On the Korteweg-de Vries-Kuramoto-Sivashinsky equation, Advances in Differential Equations 1(1) (1996), 1-20.

[2] R. J. Iorio, Fourier Analysis and Partial Differential Equations, Cambridge University, 2002.

[3] P. Guzman, S. Marx and E. Cerpa, Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control, IFAC Papers Online 52(02) (2019), 70-75.

[4] Z. Liu and S. Zheng, Semigroups Associated with Dissipative System, Chapman Hall/CRC, 1999.

[5] H. K. Pathak, An Introduction to Nonlinear Analysis and Fixed Point Theory, Springer, Singapur, 2018.

[6] Yolanda Santiago Ayala, Santiago Rojas Romero and Teófanes Quispe Mendez, Espacios de sobolev periódico y unproblema de Cauchy asociado a un modelo de ondas en un fluido viscoso, Theorema, Segunda Epoca 3(04) (2016), 7-23.

[7] Yolanda Santiago Ayala and Santiago Rojas Romero, Regularity and well-posedness of a problem to one parameter and its behavior at the limit, Bulletin of the Allahabad Mathematical Society 32(02) (2017), 207-230.

[8] Yolanda Santiago Ayala and Santiago Rojas Romero, Existencia y regularidad de solución de la ecuación del calor en espacios de Sobolev periódico, Selecciones Matemáticas 06(1) (2019), 49-65.
DOI: http://dx.doi.org/10.17268/sel.mat.2019.01.08

[9] Yolanda Santiago Ayala and Santiago Rojas Romero, Unicidad de solución de la ecuación del calor en espacios de Sobolev periódico, Selecciones Matemáticas 07(1) (2020), 172-175.
DOI: http://dx.doi.org/10.17268/sel.mat.2020.01.16

[10] D. Stuart, Partial Differential Equations Example Sheet 2, 2014.
http://www.damtp.cam.ac.uk/user/examples/D15b.pdf