References

MULTIPLICITY OF SOLUTIONS FOR GENERALIZED QUASILINEAR SCHRÖDINGER EQUATIONS


[1] José F. L. Aires and Marco A. S. Souto, Existence of solutions for a quasilinear Schrödinger equation with vanishing potentials, Journal of Mathematical Analysis and Applications 416(2) (2014), 924-946.
DOI: https://doi.org/10.1016/j.jmaa.2014.03.018

[2] José F. L. Aires and Marco A. S. Souto, Equation with positive coefficient in the quasilinear term and vanishing potential, Topological Methods in Nonlinear Analysis 46(2) (2015), 813-833.
DOI: https://doi.org/10.12775/TMNA.2015.069

[3] C. O. Alves and Marco A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, Journal of Differential Equations 254(4) (2013), 1977-1991.
DOI: https://doi.org/10.1016/j.jde.2012.11.013

[4] C. O. Alves, Y. J. Wang and Y. T. Shen, Soliton solutions for a class of quasilinear Schrödinger equations with a parameter, Journal of Differential Equations 259(1) (2015), 318-343.
DOI: https://doi.org/10.1016/j.jde.2015.02.030

[5] A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, Journal of the European Mathematical Society 7(1) (2005), 117-144.
DOI: https://doi.org/10.4171/JEMS/24

[6] A. Ambrosetti, A. Malchiodi and D. Ruiz, Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity, Journal d’Analyse Mathématique 98(1) (2006), 317-348.
DOI: https://doi.org/10.1007/BF02790279

[7] A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differential Integral Equations 18(12) (2005), 1321-1332.

[8] H. Berestycki and P. L. Lions, Nonlinear scalar field equations I: Existence of a ground state, Archive for Rational Mechanics and Analysis 82(4) (1983), 313-345.
DOI: https://doi.org/10.1007/BF00250555

[9] L. Brizhik, A. Eremko, B. Piette and W. J. Zakrzewski, Electron self-trapping in a discrete two-dimensional lattice, Physica D: Nonlinear Phenomena 159(1-2) (2001), 71-90.
DOI: https://doi.org/10.1016/S0167-2789(01)00332-3

[10] D. Bonheure and J. V. Schaftingen, Groundstates for the nonlinear Schrödinger equation with potential vanishing at infinity, Annali di Matematica Pura ed Applicata 189(2) (2010), 273-301.
DOI: https://doi.org/10.1007/s10231-009-0109-6

[11] A. de Bouard and N. Hayashi and J. C. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Communications in Mathematical Physics 189(1) (1997), 73-105.
DOI: https://doi.org/10.1007/s002200050191

[12] S. T. Chen and Z. Gao, An improved result on ground state solutions of quasilinear Schrödinger equations with super-linear nonlinearities, Bulletin of the Australian Mathematical Society 99(2) (2019), 231-241.
DOI: https://doi.org/10.1017/S0004972718001235

[13] B. T. Cheng and X. H. Tang, High energy solutions of modified quasilinear fourth-order elliptic equations with sign-changing potential, Computers & Mathematics with Applications 73(1) (2017), 27-36.
DOI: https://doi.org/10.1016/j.camwa.2016.10.015

[14] Y. K. Cheng and Y. X. Yao, Soliton solutions to a class of relativistic nonlinear Schrödinger equations, Applied Mathematics and Computation 260 (2015), 342-350.
DOI: https://doi.org/10.1016/j.amc.2015.03.055

[15] Y. K. Cheng and J. Yang, The existence and uniqueness result for a relativistic nonlinear Schrödinger equation, Abstract and Applied Analysis (2014); Article ID 362985, 1-10.
DOI: https://doi.org/10.1155/2014/362985

[16] C. M. Chu and H. D. Liu, Existence of positive solutions for a quasilinear Schrödinger equation, Nonlinear Analysis: Real World Applications 44 (2018), 118-127.
DOI: https://doi.org/10.1016/j.nonrwa.2018.04.007

[17] M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Analysis: Theory, Methods & Applications 56(2) (2004), 213-226.
DOI: https://doi.org/10.1016/j.na.2003.09.008

[18] Y. B. Deng and W. Shuai, Non-trivial solutions for a semilinear biharmonic problem with critical growth and potential vanishing at infinity, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 145(2) (2015), 281-299.
DOI: https://doi.org/10.1017/S0308210513001170

[19] Y. B. Deng and W. Shuai, Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity, Communications on Pure & Applied Analysis 13(6) (2014), 2273-2287.
DOI: https://doi.org/10.3934/cpaa.2014.13.2273

[20] J. M. do Ó, E. Gloss and C. Santana, Solitary waves for a class of quasilinear Schrödinger equations involving vanishing potentials, Advanced Nonlinear Studies 15(3) (2015), 691-714.
DOI: https://doi.org/10.1515/ans-2015-0308

[21] H. Hartmann and W. J. Zakrzewski, Electrons on hexagonal lattices and applications to nanotubes, Physical Review B 68(18) (2003), 184-302.
DOI: https://doi.org/10.1103/PhysRevB.68.184302

[22] C. Huang and G. Jia, Existence of positive solutions for supercritical quasilinear Schrödinger elliptic equations, Journal of Mathematical Analysis and Applications 472(1) (2019), 705-727.
DOI: https://doi.org/10.1016/j.jmaa.2018.11.048

[23] L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger equation on Indiana University Mathematics Journal 54(2) (2005), 443-464.
DOI: https://doi.org/10.1512/iumj.2005.54.2502

[24] O. Kwon, Existence of standing waves of nonlinear Schrödinger equations with potentials vanishing at infinity, Journal of Mathematical Analysis and Applications 387(2) (2012), 920-930.
DOI: https://doi.org/10.1016/j.jmaa.2011.09.050

[25] G. F. Li, Y. S Huang and Z. Liu, Positive solutions for quasilinear Schrödinger equations with superlinear term, Complex Variables and Elliptic Equations 65(6) (2019), 936-955.
DOI: https://doi.org/10.1080/17476933.2019.1636791

[26] G. F. Li and Y. S Huang, Positive solutions for generalized quasilinear Schrödinger equations with asymptotically linear nonlinearities, Applicable Analysis (2019).
DOI: https://doi.org/10.1080/00036811.2019.1634256

[27] J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Communications in Partial Differential Equations 29(5-6) (2004), 879-901.
DOI: https://doi.org/10.1081/PDE-120037335

[28] Z. P. Liang, J. F. Gao and A. R. Li, Infinitely many solutions to a quasilinear Schrödinger equation with a local sublinear term, Applied Mathematics Letters 89 (2019), 22-27.
DOI: https://doi.org/10.1016/j.aml.2018.09.015

[29] Q. Q. Li, K. M. Teng and X. Wu, Existence of positive solutions for a class of critical fractional Schrödinger equations with potential vanishing at infinity, Mediterranean Journal of Mathematics 14(2) (2017); Article 80.
DOI: https://doi.org/10.1007/s00009-017-0846-5

[30] Q. Q. Li and X. Wu, Existence, multiplicity, and concentration of solutions for generalized quasilinear Schrödinger equations with critical growth, Journal of Mathematical Physics 58(4) (2017); Article 041501.
DOI: https://doi.org/10.1063/1.4982035

[31] Q. Q. Li and X. Wu, Multiple solutions for generalized quasilinear Schrödinger equations, Mathematical Methods in the Applied Sciences 40(5) (2017), 1359-1366.
DOI: https://doi.org/10.1002/mma.4050

[32a] P. L. Lions, The concentration-compactness principle in the calculus of variation, The locally compact case: Part I, Annales de l’I.H.P: Analyse Non Linéaire 1(2) (1984), 109-145.

[32b] P. L. Lions, The concentration-compactness principle in the calculus of variation, The locally compact case: Part II, Annales de l’I.H.P: Analyse Non Linéaire 1(4) (1984), 223-283.

[33] X. Q. Liu, J. Q. Liu and Z. Q. Wang, Quasilinear elliptic equations via perturbation method, Proceedings of the American Mathematical Society 141(1) (2013), 253-263.
DOI: https://doi.org/10.1090/S0002-9939-2012-11293-6

[34] J. Q. Liu, X. Q. Liu and Z. Q. Wang, Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method, Communications in Partial Differential Equations 39(12) (2014), 2216-2239.
DOI: https://doi.org/10.1080/03605302.2014.942738

[35] X. Q. Liu, J. Q. Liu and Z. Q. Wang, Quasilinear elliptic equations with critical growth via perturbation method, Journal of Differential Equations 254(1) (2013), 102-124.
DOI: https://doi.org/10.1016/j.jde.2012.09.006

[36] X. N. Liu and H. B. Chen, Positive solutions for a class of quasilinear Schrödinger equations with vanishing potentials, Boundary Value Problems (2017); Article ID 35, 11 pages.
DOI: https://doi.org/10.1186/s13661-017-0769-x

[37] V. F. Morales Delgado, J. F. Gómez Aguilar and D. Baleanu, A new approach to exact optical soliton solutions for the nonlinear Schrödinger equation, European Physical Journal Plus 133(5) (2018); Article ID 189.
DOI: https://doi.org/10.1140/epjp/i2018-12020-4

[38] M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calculus of Variations and Partial Differential Equations 14(3) (2002), 329-344.
DOI: https://doi.org/10.1007/s005260100105

[39] P. H. Rabinowitz, in: Minimax Methods in Critical Point Theory with Applications to Differential Equations, in: CBMS Regional Conference Series in Mathematics, Volume 65, American Mathematical Society, Providence RI, 1986.

[40] D. Ruiz and G. Siciliano, Existence of ground states for a modified nonlinear Schrödinger equation, Nonlinearity 23(5) (2010), 1221-1233.
DOI: https://doi.org/10.1088/0951-7715/23/5/011

[41] U. B. Severo, E. Gloss and E. D. da Silva, On a class of quasilinear Schrödinger equations with superlinear or asymptotically linear terms, Journal of Differential Equations 263(6) (2017), 3550-3580.
DOI: https://doi.org/10.1016/j.jde.2017.04.040

[42] U. B. Severo and M. Gilson de Carvalho, Quasilinear Schrödinger equations with unbounded or decaying potentials, Mathematische Nachrichten 291(2-3) (2018), 492-517.
DOI: https://doi.org/10.1002/mana.201600028

[43] U. B. Severo and G. M. de Carvalho, Quasilinear Schrödinger equations with a positive parameter and involving unbounded or decaying potentials, Applicable Analysis (2019).
DOI: https://doi.org/10.1080/00036811.2019.1599106

[44] Y. T. Shen and Y. J. Wang, Standing waves for a class of quasilinear Schrödinger equations, Complex Variables and Elliptic Equations 61(6) (2016), 817-842.
DOI: https://doi.org/10.1080/17476933.2015.1119818

[45] Y. T. Shen and Y. J. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Analysis: Theory, Methods & Applications 80 (2013), 194-201.
DOI: https://doi.org/10.1016/j.na.2012.10.005

[46] Y. T. Shen and Y. J. Wang, Standing waves for a relativistic quasilinear asymptotically Schrödinger equation, Applicable Analysis 95(11) (2016), 2553-2564.
DOI: https://doi.org/10.1080/00036811.2015.1100296

[47] Y. T. Shen and Y. J. Wang, A class of generalized quasilinear Schrödinger equations, Communications on Pure & Applied Analysis 15(3) (2016), 853-870.
DOI: https://doi.org/10.3934/cpaa.2016.15.853

[48] H. X. Shi and H. B. Chen, Positive solutions for generalized quasilinear Schrödinger equations with potential vanishing at infinity, Applied Mathematics Letters 61 (2016), 137-142.
DOI: https://doi.org/10.1016/j.aml.2016.06.004

[49] H. X. Shi and H. B. Chen, Existence and multiplicity of solutions for a class of generalized quasilinear Schrödinger equations, Journal of Mathematical Analysis and Applications 452(1) (2017), 578-594.
DOI: https://doi.org/10.1016/j.jmaa.2017.03.020

[50] H. X. Shi and H. B. Chen, Infinitely many solutions for generalized quasilinear Schrödinger equations with a finite potential well, Bulletin of the Iranian Mathematical Society 44(3) (2018), 691-705.
DOI: https://doi.org/10.1007/s41980-018-0044-7

[51] Elves A. B. Silva and Gilberto F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calculus of Variations and Partial Differential Equations 39(1) (2010), 1-33.
DOI: https://doi.org/10.1007/s00526-009-0299-1

[52] Y. J. Wang, Solitary solutions for a class of Schrödinger equations in Zeitschrift für angewandte Mathematik und Physik 67(4) (2016); Article ID 88, 17 pages.
DOI: https://doi.org/10.1007/s00033-016-0679-2

[53] Y. J. Wang, A class of quasilinear Schrödinger equations with critical or supercritical exponents, Computers & Mathematics with Applications 70(4) (2015), 562-572.
DOI: https://doi.org/10.1016/j.camwa.2015.05.016

[54] X. Y. Yang, W. B. Wang and F. K. Zhao, Infinitely many radial and non-radial solutions to a quasilinear Schrödinger equation, Nonlinear Analysis: Theory, Methods & Applications 114 (2015), 158-168.
DOI: https://doi.org/10.1016/j.na.2014.11.015

[55] Z. P. Yang and F. K. Zhao, Three solutions for a fractional Schrödinger equation with vanishing potentials, Applied Mathematics Letters 76 (2018), 90-95.
DOI: https://doi.org/10.1016/j.aml.2017.08.004

[56] W. Zhang, J. Zhang and Z. M. Luo, Multiple solutions for the fourth-order elliptic equation with vanishing potential, Applied Mathematics Letters 73 (2017), 98-105.
DOI: https://doi.org/10.1016/j.aml.2017.04.030