References

A LOCAL STRONG SOLUTION OF THE NAVIER-STOKES PROBLEM IN


[1] Andras Batkai, Marjeta Kramar Fijavz and Abdelaziz Rhandi, Positive Operator Semigroups, Birkhauser, 2017.

[2] Y. Giga and T. Miyakava, Solutions in of the Navier-Stokes initial value problem, Archive for Rational Mechanics and Analysis 89(3) (1985), 267-281.
DOI: https://doi.org/10.1007/BF00276875

[3] H. Fujita and T. Kato, On the Navier-Stokes initial value problem: I, Archive for Rational Mechanics and Analysis 16(4) (1964), 269-315.
DOI: https://doi.org/10.1007/BF00276188

[4] T. Kato, Strong of the Navier-Stokes equation in with application to weak solutions, Mathematische Zeitschrift 187(4) (1984), 471-480.
DOI: https://doi.org/10.1007/BF01174182

[5] Klaus-Jochen Engel and Rainer Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, 2000.

[6] E. Kreyszig, Introduction Functional Analysis with Applications, John Wiley & Sons, 1978.

[7] Peter Meyer-Nieberg, Banach Lattices, Springer-Verlag, 1991.

[8] M. Otelbaev, Existence of a strong solution of the Navier-Stokes equation, Mathematical Journal (ISSN 1682-0525) 13(4) (2013), 5-104.

[9] James C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, 2001.

[10] Veli B. Shakhmurov, Nonlocal Navier-Stokes problems in abstract function spaces and applications, Nonlinear Analysis: Real World Applications 26 (2015), 19-43.
DOI: https://doi.org/10.1016/j.nonrwa.2015.03.011

[11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag (1983, reprint in China in 2006).

[12] K. Yosida, Functional Analysis, 6th Edition, Springer Verlag, 1980.