References

THE RETENTIVITY OF TRANSITIVITY UNDER THE CONDITION OF UNIFORM CONVERGENCE


[1] G. D. Birkhoff, Collected Mathematical Papers (in three volumes), Vol. I: Boundary Value Problems and Associated Sturmian Problems, Differential Equations, Difference Equations, Dynamics (partial), Dover Publications Inc., New York, 1968.

[2] G. D. Birkhoff, Dynamical Systems, American Mathematical Society, 1927.

[3] S. Kolyada and L. Snoha, Some aspects of topological transitivity: A survey, Grazer Mathematische Berichte 334 (1997), 3-35.

[4] R. L. Devaney, An introduction to chaotic dynamical systems, Acta Applicandae Mathematica 19(2) (1990), 204-205.
DOI: https://doi.org/10.1007/BF00049580

[5] J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney’s definition of chaos, American Mathematical Monthly 99(4) (1992), 332-334.
DOI: https://doi.org/10.2307/2324899

[6] M. Vellekoop and R. Berglund, On intervals, Transitivity = Chaos, American Mathematical Monthly 101(4) (1994), 353-355.
DOI: https://doi.org/10.2307/2975629

[7] R. Gu, Y. Sheng and Z. Xia, The average-shadowing property and transitivity for continuous flows, Chaos Solitons & Fractals 23(3) (2005), 989-995.
DOI: https://doi.org/10.1016/j.chaos.2004.06.059

[8] A. Fedeli and A. L. Donne, A note on the uniform limit of transitive dynamical systems, Bulletin of the Belgian Mathematical Society: Simon Stevin 16(1) (2009), 59-66.
DOI: https://doi.org/10.36045/bbms/1235574192

[9] R. Li, A note on stronger forms of sensitivity for dynamical systems, Chaos Solitons & Fractals 45(6) (2012), 753-758.
DOI: https://doi.org/10.1016/j.chaos.2012.02.003

[10] L. Wang, J. Liang and Z. Chu, Weakly mixing property and chaos, Archiv Der Mathematik 109(1) (2017), 83-89.
DOI: https://doi.org/10.1007/s00013-017-1044-1

[11] R. Li, T. Lu and A. Waseem, Sensitivity and transitivity of systems satisfying the large deviations theorem in a sequence, International Journal of Bifurcation and Chaos 29(9) (2019); Article 1950125.
DOI: https://doi.org/10.1142/S0218127419501256

[12] X. Wu, X. Ma, G. Chen and T. Lu, A note on the sensitivity of semiflows, Topology and its Applications 271 (2020); Article 107046.
DOI: https://doi.org/10.1016/j.topol.2019.107046

[13] X. Wu, S. Liang, X. Ma, T. Lu and S. Ahmadi, The mean sensitivity and mean equicontinuity on uniform spaces, International Journal of Bifurcation and Chaos (accepted for publication).

[14] R. deLaubenfels, H. Emamirad and V. Protopopescu, Linear chaos and approximation, Journal of Approximation Theory 105(1) (2000), 176-187.
DOI: https://doi.org/10.1006/jath.2000.3465

[15] E. Ott, Chaos in Dynamical Systems, Cambridge University Press, 2002.

[16] M. M. R. Williams, Polynomial chaos functions and stochastic differential equations, Annals of Nuclear Energy 33(9) (2006), 774-785.
DOI: https://doi.org/10.1016/j.anucene.2006.04.005

[17] D. Xiu, D. Lucor, C.-H. Su and G. E. Karniadakis, Stochastic modeling of flow-structure interactions using generalized polynomial chaos, Journal of Fluids Engineering 124(1) (2002), 51-59.
DOI: https://doi.org/10.1115/1.1436089

[18] H. Román-Flores, Uniform convergence and transitivity, Chaos Solitons & Fractals 38(1) (2008), 148-153.
DOI: https://doi.org/10.1016/j.chaos.2006.10.052

[19] R. Li, A note on uniform convergence and transitivity, Chaos Solitons & Fractals 45(6) (2012), 759-764.
DOI: https://doi.org/10.1016/j.chaos.2012.02.007

[20] P. Oprocha, Relations between distributional and Devaney chaos, Chaos: An Interdisciplinary Journal of Nonlinear Science 16(3) (2006); Article 033112.
DOI: https://doi.org/10.1063/1.2225513