[1] G. D. Birkhoff, Collected Mathematical Papers (in three volumes),
Vol. I: Boundary Value Problems and Associated Sturmian Problems,
Differential Equations, Difference Equations, Dynamics (partial),
Dover Publications Inc., New York, 1968.
[2] G. D. Birkhoff, Dynamical Systems, American Mathematical Society,
1927.
[3] S. Kolyada and L. Snoha, Some aspects of topological transitivity:
A survey, Grazer Mathematische Berichte 334 (1997), 3-35.
[4] R. L. Devaney, An introduction to chaotic dynamical systems, Acta
Applicandae Mathematica 19(2) (1990), 204-205.
DOI: https://doi.org/10.1007/BF00049580
[5] J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On
Devaney’s definition of chaos, American Mathematical Monthly
99(4) (1992), 332-334.
DOI: https://doi.org/10.2307/2324899
[6] M. Vellekoop and R. Berglund, On intervals, Transitivity = Chaos,
American Mathematical Monthly 101(4) (1994), 353-355.
DOI: https://doi.org/10.2307/2975629
[7] R. Gu, Y. Sheng and Z. Xia, The average-shadowing property and
transitivity for continuous flows, Chaos Solitons & Fractals 23(3)
(2005), 989-995.
DOI: https://doi.org/10.1016/j.chaos.2004.06.059
[8] A. Fedeli and A. L. Donne, A note on the uniform limit of
transitive dynamical systems, Bulletin of the Belgian Mathematical
Society: Simon Stevin 16(1) (2009), 59-66.
DOI: https://doi.org/10.36045/bbms/1235574192
[9] R. Li, A note on stronger forms of sensitivity for dynamical
systems, Chaos Solitons & Fractals 45(6) (2012), 753-758.
DOI: https://doi.org/10.1016/j.chaos.2012.02.003
[10] L. Wang, J. Liang and Z. Chu, Weakly mixing property and chaos,
Archiv Der Mathematik 109(1) (2017), 83-89.
DOI: https://doi.org/10.1007/s00013-017-1044-1
[11] R. Li, T. Lu and A. Waseem, Sensitivity and transitivity of
systems satisfying the large deviations theorem in a sequence,
International Journal of Bifurcation and Chaos 29(9) (2019); Article
1950125.
DOI: https://doi.org/10.1142/S0218127419501256
[12] X. Wu, X. Ma, G. Chen and T. Lu, A note on the sensitivity of
semiflows, Topology and its Applications 271 (2020); Article
107046.
DOI: https://doi.org/10.1016/j.topol.2019.107046
[13] X. Wu, S. Liang, X. Ma, T. Lu and S. Ahmadi, The mean sensitivity
and mean equicontinuity on uniform spaces, International Journal of
Bifurcation and Chaos (accepted for publication).
[14] R. deLaubenfels, H. Emamirad and V. Protopopescu, Linear chaos
and approximation, Journal of Approximation Theory 105(1) (2000),
176-187.
DOI: https://doi.org/10.1006/jath.2000.3465
[15] E. Ott, Chaos in Dynamical Systems, Cambridge University Press,
2002.
[16] M. M. R. Williams, Polynomial chaos functions and stochastic
differential equations, Annals of Nuclear Energy 33(9) (2006),
774-785.
DOI: https://doi.org/10.1016/j.anucene.2006.04.005
[17] D. Xiu, D. Lucor, C.-H. Su and G. E. Karniadakis, Stochastic
modeling of flow-structure interactions using generalized polynomial
chaos, Journal of Fluids Engineering 124(1) (2002), 51-59.
DOI: https://doi.org/10.1115/1.1436089
[18] H. Román-Flores, Uniform convergence and transitivity, Chaos
Solitons & Fractals 38(1) (2008), 148-153.
DOI: https://doi.org/10.1016/j.chaos.2006.10.052
[19] R. Li, A note on uniform convergence and transitivity, Chaos
Solitons & Fractals 45(6) (2012), 759-764.
DOI: https://doi.org/10.1016/j.chaos.2012.02.007
[20] P. Oprocha, Relations between distributional and Devaney chaos,
Chaos: An Interdisciplinary Journal of Nonlinear Science 16(3) (2006);
Article 033112.
DOI: https://doi.org/10.1063/1.2225513