References

A REMARK ON HARDY-TYPE INEQUALITY IN SPHERES


[1] A. Abolarinwa and T. Apata, -Hardy-Rellich and uncertainty principle inequalities on the sphere, Advances in Operator Theory 3(4) (2018), 745-762.
DOI: https://doi.org/10.15352/aot.1712-1282

[2] P. Baras and J. A. Goldstein, The heat equation with a singular potential, Transactions of the American Mathematical Society 284(1) (1984), 121-139.
DOI: https://doi.org/10.1090/S0002-9947-1984-0742415-3

[3] H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Revista Matemática de la Universidad Complutense de Madrid 10(2) (1997), 443-469.

[4] G. Carron, Inégalités de Hardy sur les variétés Riemanniennes non-compactes, Journal de Mathématiques Pures et Appliquées 76(10) (1997), 883-891.
DOI: https://doi.org/10.1016/S0021-7824(97)89976-X

[5] F. Dai and Y. Xu, The Hardy-Rellich inequality and uncertainty principle on the sphere, Constructive Approximation 40(1) (2014), 141-171.
DOI: https://doi.org/10.1007/s00365-014-9235-5

[6] Y. Di, L. Jiang, S. Shen and Y. Jin, A note on a class of Hardy-Rellich type inequalities, Journal of Inequalities and Applications (2013); Article 84.
DOI: https://doi.org/10.1186/1029-242X-2013-84

[7] F. Du and J. Mao, Hardy and Rellich type inequalities on metric measure spaces, Journal of Mathematical Analysis and Applications 429(1) (2015), 354-365.
DOI: https://doi.org/10.1016/j.jmaa.2015.04.021

[8] L. D’Ambrosio and S. Dipierro, Hardy inequalities on Riemannian manifolds and applications, Annales de l'Institut Henri Poincare (C) Non Linear Analysis 31(3) (2014), 449-475.
DOI: https://doi.org/10.1016/j.anihpc.2013.04.004

[9] G. Grillo, Hardy and Rellich-type inequalities for metrics defined by vector fields, Potential Analysis 18(3) (2003), 187-217.
DOI: https://doi.org/10.1023/A:1020963702912

[10] J. P. Garcia Azorero and I. P. Alonso, Hardy inequalities and some critical elliptic and parabolic problems, Journal of Differential Equations 144(2) (1998), 441-476.
DOI: https://doi.org/10.1006/jdeq.1997.3375

[11] I. Kombe, The linear heat equation with highly oscillating potential, Proceedings of the American Mathematical Society 132(9) (2004), 2683-2691.
DOI: https://doi.org/10.1090/S0002-9939-04-07392-7

[12] I. Kombe and M. Özaydin, Improved Hardy and Rellich inequalities on Riemannian manifolds, Transactions of the American Mathematical Society 361(12) (2009), 6191-6203.
DOI: https://doi.org/10.1090/S0002-9947-09-04642-X

[13] X. Sun and F. Pan, Hardy type inequalities on the sphere, Journal of Inequalities and Applications (2017); Article 148.
DOI: https://doi.org/10.1186/s13660-017-1424-x

[14] J. L. Vázquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, Journal of Functional Analysis 173(1) (2000), 103-153.
DOI: https://doi.org/10.1006/jfan.1999.3556

[15] Y. Xiao, Some Hardy inequalities on the sphere, Journal of Mathematical Inequalities 10(3) (2016), 793-805.
DOI: https://doi.org/10.7153/jmi-10-64

[16] Q. Yang, D. Su and Y. Kong, Hardy inequalities on Riemannian manifolds with negative curvature, Communications in Contemporary Mathematics 16(2) (2014); Article 1350043, 24 pages.
DOI: https://doi.org/10.1142/S0219199713500430

[17] S. Yin, A sharp Hardy type inequality on the sphere, New York Journal of Mathematics 24 (2018), 1101-1110.

[18] S. Yin, A sharp Rellich inequality on the sphere, Mathematics 6(12) (2018); Article 288.
DOI: https://doi.org/10.3390/math6120288