References

A GENERALIZED REVIEW ON HOMOGENIZATION AND TWO-SCALE CONVERGENCE


[1] R. Alexandre, Homogenisation and convergence, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 127(3) (1997), 441-455.
DOI: https://doi.org/10.1017/S0308210500029863

[2] G. Allaire, Homogenization of the Unsteady Stokes Equations in Porous Media, Progress in Partial Differential Equations: Calculus of Variations, Applications, Pont-à-Mousson, 1991.

[3] G. Allaire, Homogenization and two-scale convergence, SIAM Journal on Mathematical Analysis 23(6) (1992), 1482-1518.
DOI: https://doi.org/10.1137/0523084

[4] G. Allaire, Two-Scale Convergence and Homogenization of Periodic Structures, 1993.

[5] G. Allaire, Introduction to Homogenization Theory, VKI Lecture Series 2001-2002 Multiscale Methods, Lecture 1, 2002.

[6] G. Allaire and M. Briane, Multiscale convergence and reiterated homogenisation, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 126(2) (1996), 297-342.
DOI: https://doi.org/10.1017/S0308210500022757

[7] G. Allaire and C. Conca, Boundary layers in the homogenization of a spectral problem in fluid-solid structures, SIAM Journal on Mathematical Analysis 29(2) (1998), 343-379.
DOI: https://doi.org/10.1137/S0036141096304328

[8] G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications, In Proceedings of the International Conference on Mathematical Modelling of Flow Through Porous Media (May 1995), A. Bourgeat et al., Editors, (1996), 15-25.

[9] G. Allaire and K. El Ganaoui, Homogenization of a conductive and radiative heat transfer problem, Multiscale Modeling & Simulation 7(3) (2008), 1148-1170.
DOI: https://doi.org/10.1137/080714737

[10] F. Alouges, Introduction to Periodic Homogenization, Minicourse in Tohoku University 4 (2016).
http://www.cmap.polytechnique.fr/~alouges/Homogenization/CoursHomog.pd f

[11] M. Amar, Two-scale convergence and homogenization on BV(Ω), Asymptotic Analysis 16(1) (1998), 65-84.

[12] S. N. Antontsev, A. M. Meirmanov and V. V. Yurinsky, Homogenization of stokes-type equations with variable viscosity, Siberian Advances in Mathematics 8(2) (1998), 1-29.

[13] T. Arbogast, J. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM Journal on Mathematical Analysis 21(4) (1990), 823-836.
DOI: https://doi.org/10.1137/0521046

[14] I. Babuska, Solution of problems with interfaces and singularities, In Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations Academic Press, New York (1974), pages 213-277.
DOI: https://doi.org/10.1016/B978-0-12-208350-1.50013-3

[15] I. Babuska, Homogenization approach in engineering, Computing Methods in Applied Sciences and Engineering (1975), 137-153.
DOI: https://doi.org/10.1007/978-3-642-85972-4_8

[16a] I. Babuska, Solution of interface problems by homogenization: I, SIAM Journal on Mathematical Analysis 7(5) (1976), 603-634.
DOI: https://doi.org/10.1137/0507048

[16b] I. Babuska, Solution of interface problems by homogenization: II, SIAM Journal on Mathematical Analysis 7(5) (1976), 635-645.
DOI: https://doi.org/10.1137/0507049

[16c] I. Babuska, Solution of interface problems by homogenization: III, SIAM Journal on Mathematical Analysis 8(6) (1977), 923-937.
DOI: https://doi.org/10.1137/0508071

[17] A. Back and E. Frenod, Geometric two-scale convergence on manifold and applications to the vlasov equation, Discrete and Continuous Dynamical Systems - Series S 8(1) (2015), 223-241.
DOI: https://doi.org/10.3934/dcdss.2015.8.223

[18] N. Bakhvalov and G. Panasenko, Homogenisation: Averaging Processes in Periodic Media, Kluwer, Dordrecht, 1989.

[19] A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Volume 5 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1978.

[20] W. Bielski, J. J. Telega and R. Wojnar, Nonstationary flow of a viscous fluid through a porous elastic medium: Asymptotic analysis and two-scale convergence, Mechanics Research Communications 26(5) (1999), 619-628.
DOI: https://doi.org/10.1016/S0093-6413(99)00070-1

[21] A. Bourgeat and A. Hidanl, Effective model of two-phase flow in a porous medium made of different rock types, Applicable Analysis 58(1-2) (1995), 1-29.
DOI: https://doi.org/10.1080/00036819508840360

[22] A. Bourgeat, S. Luckhaus and A. Mikelic, Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow, SIAM Journal on Mathematical Analysis 27(6) (1996), 1520-1543.
DOI: https://doi.org/10.1137/S0036141094276457

[23] S. Wright, A. Mikelic and A. Bourgeat, Stochastic two-scale convergence in the mean and applications, Journal für die Reine und Angewandte Mathematik 456 (1994), 19-51.
DOI: https://doi.org/10.1515/crll.1994.456.19

[24] D. Caillerie, Homogénéisation des matériaux à structure périodique, Méthodes Asymptotiques en Mécanique.
http://mam.ida.upmc.fr/Telechargements/cours-Caillerie.pdf

[25] É. Canon and J. N. Pernin, Homogenization of Diffusion in a Composite Medium with Interfacial Barrier, Comptes Rendus de l’Académie des Sciences, Series I: Mathematics 325(1) (1997), 123-126.
DOI: https://doi.org/10.1016/S0764-4442(97)83946-8

[26] J. Casado-Diaz and I. Gayte, A general compactness result and its application to the two-scale convergence of almost periodic functions, Comptes Rendus de l’Académie des Sciences, Series I: Mathematics 323(4) (1996), 329-334.

[27] P. Cazeaux and C. Grandmont, Homogenization of a multiscale viscoelastic model with nonlocal damping, application to the human lungs, Mathematical Models and Methods in Applied Sciences 25(6) (2015), 1125-1177.
DOI: https://doi.org/10.1142/S0218202515500293

[28] R. M. Christensen, Mechanics of Composite Materials, John Wiley, New-York, 1979.

[29] D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization, Comptes Rendus Mathematique 335(1) (2002), 99-104.
DOI: https://doi.org/10.1016/S1631-073X(02)02429-9

[30] D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM Journal on Mathematical Analysis 40(4) (2008), 1585-1620.
DOI: https://doi.org/10.1137/080713148

[31] D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford, 1999.

[32] G. W. Clark and L. A. Packer, Two-scale homogenization of implicit degenerate evolution equations, Journal of Mathematical Analysis and Applications 214(2) (1997), 420-438.
DOI: https://doi.org/10.1006/jmaa.1997.5577

[33] G. W. Clark and L. A. Packer, Two-scale homogenization of non-linear degenerate evolution equations, Journal of Mathematical Analysis and Applications 238(1) (1999), 316-328.
DOI: https://doi.org/10.1006/jmaa.1999.6547

[34] G. W. Clark and R. E. Showalter, Two-scale convergence of a model for flow in a partially fissured medium, Electronic Journal of Differential Equations (1999), 1-20; Article 2.

[35] C. Conca, J. Planchard and M. Vanninathan, Fluids and Periodic Structures, RAM: Research in Applied Mathematics, 1995.

[36] D. Cioranescu, P. Donato and R. Zaki, Periodic unfolding and robin problems in perforated domains, Comptes Rendus Mathematique 342(7) (2006), 469-474.
DOI: https://doi.org/10.1016/j.crma.2006.01.028

[37] A. Ene and J. Saint Jean Paulin, On a model of fractured porous media, Mathematical Modelling of Flow Through Porous Media (1995), pages 402-409.

[38] I. A. Ene and J. Saint Paulin, Homogenization and two-scale convergence for a Stokes or Navier-Stokes flow in an elastic thin porous medium, Mathematical Models and Methods in Applied Sciences 6(7) (1996), 941-955.
DOI: https://doi.org/10.1142/S0218202596000389

[39] Jan Francu, On two-scale convergence and periodic unfolding, Tatra Mountains Mathematical Publications 48(1) (2011), 73-81.
DOI: https://doi.org/10.2478/v10127-011-0007-3

[40] E. Frénod and E. Sonnendrucker, Long time behavior of the two-dimensional Vlasov equation with a strong external magnetic field, Mathematical Models and Methods in Applied Sciences 10(4) (2000), 539-553.
DOI: https://doi.org/10.1142/S021820250000029X

[41] Z. Habibi, Homogenization and Two Scales Convergence of Some Stationary and Non-stationary Heat Transfer Problems, Application to Gas Cooled Nuclear Rectors, PhD Thesis, École Polytechnique, Paris, 2011.

[42] Z. Hashin, The elastic moduli of heterogeneous materials, Journal of Applied Mechanics 29(1) (1962), 143-150.
DOI: https://doi.org/10.1115/1.3636446

[43] Z. Hashin, Analysis of composite materials: A survey, Journal of Applied Mechanics 50(3) (1983), 481-505.
DOI: https://doi.org/10.1115/1.3167081

[44] A. Holmbom, Homogenization of parabolic equations an alternative approach and some corrector-type results, Applications of Mathematics 42(5) (1997), 321-343.
DOI: https://doi.org/10.1023/A:1023049608047

[45] U. Hornung, Homogenization and Porous Media, Springer Verlag, 1997.

[46] J. Jiang and C. Lin, Weak turbulence plasma induced by two-scale homogenization, Journal of Mathematical Analysis and Applications 410(2) (2014), 585-596.
DOI: https://doi.org/10.1016/j.jmaa.2013.08.010

[47] S. Kesavan, Homogenization of elliptic eigenvalue problems: Part 2, Applied Mathematics and Optimization 5(1) (1979), 197-216.
DOI: https://doi.org/10.1007/BF01442554

[48] R. Lipton and B. Vernescu, Homogenisation of two-phase emulsions, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 124(6) (1994), 1119-1134.
DOI: https://doi.org/10.1017/S0308210500030146

[49] D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence, International Journal of Pure and Applied Mathematics 2(1) (2002), 35-86.

[50] R. E. Miller, Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence, Discrete & Continuous Dynamical Systems: A 1(4) (1995), 485-502.
DOI: https://doi.org/10.3934/dcds.1995.1.485

[51] A. K. Nandakumaran and S. Sivaji Ganesh, Lectures on two scale convergence and homogenization, In NPDE-TCA Advanced Workshop on Homogenization, Control Theory and Applications, 2016.

[52] A. K. Nandakumaran and M. Rajesh, Homogenization of a nonlinear degenerate parabolic differential equation, Electronic Journal of Differential Equations (2001), 1-19; Article 17.

[53] L. Nechvátal, Alternative approaches to the two-scale convergence, Applications of Mathematics 49(2) (2004), 97-110.
DOI: https://doi.org/10.1023/B:APOM.0000027218.04167.9b

[54] M. Neuss-Radu, Some extensions of two-scale convergence, Comptes Rendus de l'Académie des Sciences, Series I: Mathematics 322(9) (1996), 899-904.

[55] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM Journal on Mathematical Analysis 20(3) (1989), 608-623.
DOI: https://doi.org/10.1137/0520043

[56] G. Nguetseng, Homogenization structures and applications I, Zeitschrift für Analysis und Ihre Anwendungen 22(1) (2003), 73-107.
DOI: https://doi.org/10.4171/zaa/1133

[57] G. Nguetseng, Homogenization structures and applications II, Zeitschrift für Analysis und Ihre Anwendungen 23(3) (2004), 483-508.
DOI: https://doi.org/10.4171/zaa/1208

[58] G. Nguetseng and N. Svanstedt, Banach Journal of Mathematical Analysis 5(1) (2011), 101-135.

[59] R. P. Gilbert and A. Mikelic, Homogenizing the acoustic properties of the seabed: Part 1, Nonlinear Analysis: Theory, Methods & Applications 40(1-8) (2000), 185-212.
DOI: https://doi.org/10.1016/S0362-546X(00)85011-7

[60] D. Polisevski and J. Saint Jean-Paulin, Homogenization of stokes-Boussinesq flows in a quasiperiodic domain, Revue Roumaine de Mathématique Pures et Appliquées 40(9-10) (1995), 797-808.

[61] M. L. Mascarenhas and D. Polisevski, The warping, the torsion and the Neumann problems in a quasi-periodically perforated domain, Mathematical Modelling and Numerical Analysis 28(1) (1994), 37-57.
DOI: https://doi.org/10.1051/m2an/1994280100371

[62] M. Rajesh, Correctors for flow in a partially fissured medium, Electronic Journal of Differential Equations (1999), 1-15; Article 27.

[63] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer, 1980.

[64] N. Wellander, Homogenization of the Maxwell equations: Case I, linear theory, Applications of Mathematics 46(1) (2001), 29-51.
DOI: https://doi.org/10.1023/A:1013727504393

[65] X. Zhang, Two-scale convergence and homogenization for a class of quasilinear elliptic equations, Journal of Partial Differential Equations 9(3) (1996), 263-276.