References

A NEW CHARACTERIZATION OF PRINCIPAL IDEAL DOMAINS


[1] N. Q. Chinh and P. H. Nam, New characterizations of principal ideal domains, East-West Journal of Mathematics 10(2) (2008), 149-152.

[2] P. M. Cohn, Algebra, Vol. I, Second Edition, John Wiley & Sons Ltd., 1982.

[3] P. M. Cohn, Bézout rings and their subrings, Mathematical Proceedings of the Cambridge Philosophical Society 64(2) (1968), 251-264.
DOI: https://doi.org/10.1017/S0305004100042791

[4] D. S. Dummit and R. M. Foote, Abstract Algebra, 3rd Edition, John Wiley & Sons, Inc., 2004.

[5] R. Gilmer, Commutative Semigroup Rings, The University of Chicago Press, Chicago, 1984.

[6] I. Kaplansky, Commutative Rings, Revised Edition, The University of Chicago Press, Chicago and London, 1974.

[7] D. G. Northcott, Lessons on Rings, Modules and Multiplicities, Cambridge University Press, Cambridge, 1968.
DOI: https://doi.org/10.1017/CBO9780511565922

[8] M. Zafrullah, On a property of pre-Schreier domains, Communications in Algebra 15(9) (1987), 1895-1920.
DOI: https://doi.org/10.1080/00927878708823512