[1] A. Zoitl and V. Vyatkin, IEC 61499 architecture for distributed
automation: The “glass half full†view, IEEE Industrial
Electronics Magazine 3(4) (2009), 7-23.
DOI: https://doi.org/10.1109/MIE.2009.934789
[2] C. Gerber, H.-M. Hanisch and S. Ebbinghaus, From IEC 61131 to IEC
61499 for distributed systems: A case study, EURASIP Journal on
Embedded Systems, Article 231630 (2008), 1-8.
[3] K. Thramboulidis, IEC 61499 vs. 61131: A comparison based on
misperceptions, Journal of Software Engineering and Applications 6(8)
(2013), 405-415.
DOI: https://doi.org/10.4236/jsea.2013.68050
[4] N. Kashyap, C. Yang, S. Sierla and P. G. Flikkema, Automated fault
location and isolation in distribution grids with distributed control
and unreliable communication, IEEE Transactions on Industrial
Electronics 62(4) (2015), 2612-2619.
DOI: https://doi.org/10.1109/TIE.2014.2387093
[5] G. Zhabelova, V. Vyatkin and V. N. Dubinin, Toward industrially
usable agent technology for smart grid automation, IEEE Transactions
on Industrial Electronics 62(4) (2015), 2629-2641
DOI: https://doi.org/10.1109/TIE.2014.2371777
[6] P. Lindgren, J. Eriksson, M. Lindner, A. Lindner, D. Pereira and
L. M. Pinho, End-to-end response time of IEC 61499 distributed
applications over switched ethernet, IEEE Transaction on Industrial
Informatics 13(1) (2017), 287-297.
DOI: https://doi.org/10.1109/TII.2016.2626463
[7] L. I. Pinto, C. D. Vasconcellos, R. S. U. Rosso and G. H. Negri,
ICARU-FB: An IEC 61499 compliant multiplatform software
infrastructure, IEEE Transactions on Industrial Informatics 12(3)
(2016), 1074-1083.
DOI: https://doi.org/10.1109/TII.2016.2549862
[8] F. Andren, R. Brundlinger and T. Strasser, IEC 61850/61499 control
of distributed energy resources: Concept, guidelines, and
implementation, IEEE Transactions on Energy Conversion 29(4) (2014),
1008-1017.
DOI: https://doi.org/10.1109/TEC.2014.2352338
[9] T. Peng, X. Xu and L. Wang, A novel energy demand modelling
approach for CNC machining based on function blocks, Journal of
Manufacturing Systems 33(1) (2014), 196-218.
DOI: https://doi.org/10.1016/j.jmsy.2013.12.004
[10] G. Čengić, O. Ljungkrantz and K. Åkesson, Formal
modeling of function block applications running in IEC 61499 execution
runtime, in Proceedings of the 11th IEEE International Conference on
Emerging Technologies and Factory Automation (2006), 1269-1276.
DOI: https://doi.org/10.1109/ETFA.2006.355187
[11] S. Panjaitan and G. Frey, Functional design for IEC 61499
distributed control systems using UML activity diagrams, Proceedings
of the 2005 International Conference on Instrumentation,
Communications and Information Technology ICICI 2005, Bandung,
Indonesia (2005), 64-70.
[12] M. Fletcher and R. W. Brennan, Designing holonic manufacturing
systems using the IEC 61499 (function block) architecture, IEICE
Transactions on Information and Systems E84D(10) (2001), 1398-1401.
[13] C. Sunder, A. Zoitl, J. H. Christensen, M. Colla and T. Strasser,
Execution models for the IEC 61499 elements composite function block
and subapplication, 5th IEEE International Conference on Industrial
Informatics (INDIN'07), Vienna, Austria (2007), 1169-1175.
DOI: https://doi.org/10.1109/INDIN.2007.4384941
[14] W. J. Kim and S. I. Cha, Research on the structural model of IEC
61499 applications with composite function blocks, Bulletin of the
Academy of Science, the DPR Korea 375(3) (2017), 25-26.
[15] G. D. Shaw, P. S. Roop and Z. Salcic, A hierarchical and
concurrent approach for IEC 61499 function blocks, 2009 IEEE
Conference on Emerging Technologies & Factory Automation (ISSN:
978-1-4244-2728-4), 1 (2009), 1-8.
DOI: https://doi.org/10.1109/ETFA.2009.5347020
[16] R. Sinha, P. S. Roop, G. Shaw, Z. Salcic and M. M. Y. Kuo,
Hierarchical and concurrent ECCs for IEC 61499 function blocks, IEEE
Transactions on Industrial Informatics 12(1) (2016), 59-68.
DOI: https://doi.org/10.1109/TII.2015.2496262
[17] W. Dai, V. N. Dubinin and V. Vyatkin, Migration from PLC to IEC
61499 using semantic web technologies, IEEE Transactions on Systems,
Man, and Cybernetics: Systems 44(3) (2014), 277-291.
DOI: https://doi.org/10.1109/TSMCC.2013.2264671
[18] V. Dubinin and V. Vyatkin, On definition of a formal model for
IEC 61499 function blocks, EURASIP Journal Embedded Systems (2008),
1-10.
DOI: https://doi.org/10.1155/2008/426713
[19] G. Čengić and K. Åkesson, On formal analysis of IEC
61499 applications, Part A: Modeling, IEEE Transactions on Industrial
Informatics 6(2) (2010), 136-144.
DOI: https://doi.org/10.1109/TII.2010.2040392
[20] G. Čengić and K. Åkesson, On formal analysis of IEC
61499 applications, Part B: Execution semantics, IEEE Transactions on
Industrial Informatics 6(2) (2010), 145-154.
DOI: https://doi.org/10.1109/TII.2010.2040393
[21] J. Carlson and L. Lednicki, Timing Analysis for IEC 61499,
Version 1.0 (2012), 1-19.
[22] D. L’Her, P. L. Parc and L. Marcé, Proving sequential
function chart programs using timed automata, Theoretical Computer
Science 267(1-2) (2001), 141-155.
DOI: https://doi.org/10.1016/S0304-3975(00)00301-7
[23] J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. L.
Guernic and Y.-M. Tang, Modeling statecharts and activitycharts as
SIGNAL equations, ACM Transaction on Software Engineering Methodology
10(4) (2001), 397-451.
DOI: https://doi.org/10.1145/384189.384191