References

THE (3 + 1)-DIMENSIONAL FRACTIONAL MODIFIED KDV-ZAKHAROV-KUZNETSOV EQUATION BY USING THE IMPROVED GENERALIZED TANH-COTH METHOD


[1] F. S. Khodadad, F. Nazari, M. Eslami and H. Rezazadeh, Soliton solutions of the conformable fractional Zakharov-Kuznetsov equation with dual-power law nonlinearity, Optical and Quantum Electronics 49(11) (2017); Article 384, 12 pages.
DOI: https://doi.org/10.1007/s11082-017-1225-y

[2] M. Eslami, H. Rezazadeh, M. Rezazadeh and S. S. Mosavi, Exact solutions to the space-time fractional Schrödinger-Hirota equation and the space-time modified KdV-Zakharov-Kuznetsov equation, Optical and Quantum Electronics 49(8) (2017); Article 279, 15 pages.
DOI: https://doi.org/10.1007/s11082-017-1112-6

[3] S. Sahoo and S. S. Ray, Analysis of Lie symmetries with conservation laws for the (3+1) dimensional time-fractional mKdV-ZK equation in ion-acoustic waves, Nonlinear Dynamic 90(2) (2017), 1105-1113.
DOI: https://doi.org/10.1007/s11071-017-3712-x

[4] Y. Cenesiz, O. Tasbozan and A. Kurt, Functional variable method for conformable fractional modified KdV-ZK equation and Maccari system, Tbilisi Mathematical Journal 10(1) (2017), 117-125.

[5] S. Sahoo and S. S. Ray, Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations, Computers and Mathematics with Applications 70(2) (2015), 158-166.
DOI: https://doi.org/10.1016/j.camwa.2015.05.002

[6] M. T. Islam, M. A. Akbar and M. A. K. Azad, Closed-form travelling wave solutions to the nonlinear space-time fractional coupled Burgers’ equation, Arab Journal of Basic and Applied Sciences 26(1) (2019), 1-11.
DOI: https://doi.org/10.1080/25765299.2018.1523702

[7] W. Malfliet, Solitary wave solutions of nonlinear wave equation, American Journal of Physics 60(7) (1992), 650-654.
DOI: https://doi.org/10.1119/1.17120

[8] E. Fan and Y. C. Hona, Generalized tanh method extended to special types of nonlinear equations, Zeitshrift fur Naturforschung A 57(8) (2002), 692-700.
DOI: https://doi.org/10.1515/zna-2002-0809

[9] A. M. Wazwaz, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Applied Mathematics and Computation 84(2) (2007), 1002-1014.
DOI: https://doi.org/10.1016/j.amc.2006.07.002

[10] C. A. Gomez and A. H. Salas, The Cole-Hopf transformation and improved tanh-coth method applied to new integrable system (KdV6), Applied Mathematics and Computation 204(2) (2008), 957-962.
DOI: https://doi.org/10.1016/j.amc.2008.08.006

[11] G. Garzon and S. Gomez, The generalized tanh-coth method applied to biological model referent to nano-solitons of ionic wave, Applied Mathematical Sciences 9(138) (2015), 6877-6882.

[12] M. Torvattanabun and S. Koonprasert, Variational iteration method combined with the improved generalized tanh-coth method for the generalized (1 + 1)-dimensional and (2+1) dimensional equations, Far East Journal of Mathematical Sciences 100(8) (2016), 1339-1355.
DOI: http://dx.doi.org/10.17654/MS100081339

[13] M. Torvattanabun, J. Simmapim, D. Saennuad and T. Somaumchan, The improved generalized tanh-coth method applied to sixth-order solitary wave equation, Journal of Mathematics (2017); Article ID 8751097, 11 pages.
DOI: https://doi.org/10.1155/2017/8751097

[14] X.-J. Yang, Advanced Local Fractional Calculus and its Applications, World Science Publisher, New York, 2012.

[15] X.-J. Yang, J. A. T. Machado and H. M. Srivastava, A new numerical technique for solving the local fractional diffusion equation: Two-dimensional extended differential transform approach, Applied Mathematics and Computation 274 (2016), 143-151.
DOI: https://doi.org/10.1016/j.amc.2015.10.072

[16] S. Bibi, S. T. M. Din, R. Ullah, N. Ahmed and U. Khan, Exact solutions for STO and (3 + 1)-dimensional KdV-ZK equations using -expansion method, Results in Physics 7 (2017), 4434-4439.
DOI: https://doi.org/10.1016/j.rinp.2017.11.009