References

NUMERICAL BLOW-UP TIME WITH RESPECT TO PARAMETERS FOR A REACTION DIFFUSION EQUATION


[1] L. M. Abia, J. C. López-Marcos and J. Martinez, On the blow-up time convergence of semidiscretizations of reaction-diffusion equations, Applied Numerical Mathematics 26(4) (1998), 399-414.
DOI: https://doi.org/10.1016/S0168-9274(97)00105-0

[2] T. K. Boni, Extinction for discretizations of some semilinear parabolic equations, Comptes Rendus de l'Académie des Sciences, Series I: Mathematics 333(8) (2001), 795-800.
DOI: https://doi.org/10.1016/S0764-4442(01)02078-X

[3] T. K. Boni, On blow-up and asymptotic behavior of solutions to a nonlinear parabolic equation of second order with nonlinear boundary conditions, Commentationes Mathematicae Universitatis Carolinae 40(3) (1999), 457-475.

[4] T. K. Boni and Halima Nachid, Blow-up for semidiscretizations of some semilinear parabolic equations with nonlinear boundary conditions, Rev. Ivoir. Sci. Tech. 11 (2008), 61-70.

[5] T. K. Boni, Halima Nachid and Nabongo Diabate, Blow-up for discretization of a localized semilinear heat equation, Analele Stiintifice Ale Universitatii 2 (2010).

[6] H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for revisited, Advances in Differential Equations 1(1) (1996), 73-90.

[7] Halima Nachid, Quenching for semi discretizations of a semilinear heat equation with potentiel and general non linearities, Revue d’Analyse Numerique et de Theorie de L’approximation 2 (2011), 164-181.

[8] Halima Nachid, Full discretizations of solution for a semilinear heat equation with Neumann boundary condition, Research and Communications in Mathematics and Mathematical Sciences 1(1) (2012), 53-85.

[9] Halima Nachid, L. B. Sobo Blin and Yoro Gozo, The blow-up time for reaction-diffusion equations with dirichlet boundary conditions, Journal of Multidisciplinary Engineering Science Studies 2(5) (2016), 483-493.

[10] A. Friedman and A. A. Lacey, The blow-up time for solutions of nonlinear heat equations with small diffusion, SIAM Journal on Mathematical Analysis 18(3) (1987), 711-721.
DOI: https://doi.org/10.1137/0518054

[11] A. Friedman and B. McCleod, Blow-up of positive solutions of semilinear heat equations, Indiana University Mathematics Journal 34(2) (1985), 425-447.
DOI: https://doi.org/10.1512/iumj.1985.34.34025

[12] Y. Fujishima and K. Ishige, Blow-up set for a semilinear heat equation with small diffusion, Journal of Differential Equations 249(5) (2010), 1056-1077.
DOI: https://doi.org/10.1016/j.jde.2010.03.028

[13] K. Ishige and H. Yagisita, Blow-up problems for a semilinear heat equation with large diffusion, Journal of Differential Equations 212(1) (2005), 114-128.
DOI: https://doi.org/10.1016/j.jde.2004.10.021

[14] N. Mizoguchi and E. Yanagida, Life span of solutions for a semilinear parabolic problem with small diffusion, Journal of Mathematical Analysis and Applications 261(1) (2001), 350-368.
DOI: https://doi.org/10.1006/jmaa.2001.7530

[15] D. Nabongo and T. K. Boni, Numerical quenching for semilinear parabolic equation, Mathematical Modelling and Analysis 13(4) (2008), 521-538.
DOI: https://doi.org/10.3846/1392-6292.2008.13.521-538

[16] D. Nabongo and T. K. Boni, Quenching time of solutions for some nonlinear parabolic equations, Analele Stiintifice Ale Universitatii “Ovidius” Constanta 16(1) (2008), 91-106.

[17] T. Nakagawa, Blowing up on the finite difference solution to Applied Mathematics and Optimization 2(4) (1975), 337-350.
DOI: https://doi.org/10.1007/BF01448176

[18] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs, NJ, 1967.

[19] R. Suzuki, On blow-up sets and asymptotic behavior of interface of one dimensional quasilinear degenerate parabolic equations, Publications of the Research Institute for Mathematical Sciences 27 (1991), 375-398.

[20] H. Yagisita, Blow-up profile of a solution for a nonlinear heat equation with small diffusion, Journal of the Mathematical Society of Japan 56(4) (2004), 993-1005.
DOI: https://doi.org/10.2969/jmsj/1190905445

[21] F. B. Weissler, An blow-up estimate for a nonlinear heat equation, Communications on Pure and Applied Mathematics 38(3) (1985), 291-295.
DOI: https://doi.org/10.1002/cpa.3160380303

[22] L. Wang and Q. Chen, The asymptotic behavior of blow-up solution of localized nonlinear equations, Journal of Mathematical Analysis and Applications 200(2) (1996), 315-321.
DOI: https://doi.org/10.1006/jmaa.1996.0207