References

PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM


[1] G. Y. Chen and X. Q. Yang, The vector complementary problem and its equivalences with the weak minimal element in ordered spaces, J. Math. Anal. Appl. 153 (1990), 136-158.

[2] G. Y. Chen and B. D. Craven, Existence and continuity of solutions for vector optimization, J. Math. Anal. Appl. 220 (1998), 90-98.

[3] R. Cominetti and J. P. Dussault, Stable exponential-penalty algorithm with super-linear convergence, J. Optim. Theory Appl. 83(2) (1994), 285-309.

[4] J. P. Evans and F. J. Gould, An existence theorem for penalty function theory, SIAM J. Control. 12 (1974), 505-516.

[5] X. Q. Huang and X. Q. Yang, Nonlinear Lagrangian for multiobjective optimization and applications to duality and exact penalization, SIAM J. Optim. 13(3) (2002), 675-692.

[6] X. Q. Huang, X. Q. Yang and K. L. Teo, Convergence analysis of a class of penalty methods for vector optimization problems with cone constraints, J. Global Optim. 36(4) (2006), 637-652.

[7] K. R. Kazmi, Existence of solutions for vector optimization, Appl. Math. Lett. 9 (1996), 19-22.

[8] G. M. Lee and D. S. Kim, Existence of solutions for vector optimization problems, J. Optim. Theory Appl. 81(3) (1994), 459-468.

[9] S. Liu and E. Feng, The exponential penalty function method for multiobjective programming problems, Optim. Methods Softw. 25(5) (2010), 667-675.

[10] V. H. Nguyen and J. J. Strodiot, On the convergence rate for a penalty function method of exponential type, J. Optim. Theory Appl. 27(4) (1979), 495-508.

[11] R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, New Jersey, 1970.

[12] L. B. Santos, G. Ruiz-Garzon, M. A. Rojas-Medar and A. Rufian-Lizana, Existence of weakly efficient solutions in nonsmooth vector optimization, Appl. Math. Comput. 200(2) (2008), 547-556.

[13] D. J. White, Multiobjective programming and penalty functions, J. Optim. Theory Appl. 13(3) (2002), 675-692.

[14] W. I. Zangwill, Nonlinear Programming: A Unified Approach, Prentice Hall, Engle-wood Cliffs, NJ, 1969.