[1] G. Y. Chen and X. Q. Yang, The vector complementary problem and
its equivalences with the weak minimal element in ordered spaces, J.
Math. Anal. Appl. 153 (1990), 136-158.
[2] G. Y. Chen and B. D. Craven, Existence and continuity of solutions
for vector optimization, J. Math. Anal. Appl. 220 (1998), 90-98.
[3] R. Cominetti and J. P. Dussault, Stable exponential-penalty
algorithm with super-linear convergence, J. Optim. Theory Appl. 83(2)
(1994), 285-309.
[4] J. P. Evans and F. J. Gould, An existence theorem for penalty
function theory, SIAM J. Control. 12 (1974), 505-516.
[5] X. Q. Huang and X. Q. Yang, Nonlinear Lagrangian for
multiobjective optimization and applications to duality and exact
penalization, SIAM J. Optim. 13(3) (2002), 675-692.
[6] X. Q. Huang, X. Q. Yang and K. L. Teo, Convergence analysis of a
class of penalty methods for vector optimization problems with cone
constraints, J. Global Optim. 36(4) (2006), 637-652.
[7] K. R. Kazmi, Existence of solutions for vector optimization, Appl.
Math. Lett. 9 (1996), 19-22.
[8] G. M. Lee and D. S. Kim, Existence of solutions for vector
optimization problems, J. Optim. Theory Appl. 81(3) (1994),
459-468.
[9] S. Liu and E. Feng, The exponential penalty function method for
multiobjective programming problems, Optim. Methods Softw. 25(5)
(2010), 667-675.
[10] V. H. Nguyen and J. J. Strodiot, On the convergence rate for a
penalty function method of exponential type, J. Optim. Theory Appl.
27(4) (1979), 495-508.
[11] R. T. Rockafellar, Convex Analysis, Princeton Univ. Press,
Princeton, New Jersey, 1970.
[12] L. B. Santos, G. Ruiz-Garzon, M. A. Rojas-Medar and A.
Rufian-Lizana, Existence of weakly efficient solutions in nonsmooth
vector optimization, Appl. Math. Comput. 200(2) (2008), 547-556.
[13] D. J. White, Multiobjective programming and penalty functions, J.
Optim. Theory Appl. 13(3) (2002), 675-692.
[14] W. I. Zangwill, Nonlinear Programming: A Unified Approach,
Prentice Hall, Engle-wood Cliffs, NJ, 1969.