References

DECREASING USC SOLUTIONS OF AN ITERATIVE EQUATION


[1] J. P. Aubin and H. Frankowska, Set-valued Analysis, Birkhäuser, Boston, 1990.

[2] L. Chen, Multivalued solutions of an iterative equation, Acta Math. Sci. 4 (2008), 636-642.

[3] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Kluwer, Dordrecht, 1997.

[4] L. Li, A note on a multivalued iterative equation, Acta Math. Univ. Comenianae 78(1), (2009), 71-73.

[5] M. Malenica, On the solutions of the functional equation Mat. Vesnik. 6 (1982), 301-305.

[6] K. Nikodem, On Jensen’s functional equation for set-valued functions, Radovi Mat. 3 (1987), 23-33.

[7] K. Nikodem, Set-valued solutions of the Pexider functional equation, Funkcial. Ekvac. 31 (1988), 227-231.

[8] K. Nikodem and W. Zhang, On a multivalued iterative equation, Publ. Math. Debrecen. 3-4 (2004), 427-435.

[9] J. Si, Existence of locally analytic solutions of the iteratived equation Acta Math. Sinica 37 (1994), 590-600 (in Chinese).

[10] W. Smajdor, Multi-valued solutions of a linear functional equation, Ann. Polon. Math. 45 (1985), 253-259.

[11] J. Tabor and M. Zoldak, Iterative equations in Banach spaces, J. Math. Anal. Appl. 299 (2004), 651-662.

[12] J. Zhang, L. Yang and W. Zhang, Some advances on functional equations, Adv. Math. (China) 24 (1995), 385-405.

[13] W. Zhang, Discussion on the iterated equation Chinese Sci. Bull. 32 (1987), 1441-1451 (in Chinese).

[14] W. Zhang, Discussion on the differentiable solutions of the iterated equation Nonlinear Anal. 15 (1990), 387-398.

[15] W. Zhang and J. A. Baker, Continuous solutions for a polynomial-like iterative with variable coefficients, Ann. Polon. Math. 73 (2000), 29-36.

[16] W. Zhang, Solutions of equivariance for a polynomial-like iterative equation, Proc. Royal Soc. Edinburgh (A) 130 (2000), 1153-1163.

[17] W. Zhang, K. Nikodem and B. Xu, Convex solutions of polynomial-like iterative equations, J. Math. Anal. Appl. 315 (2006), 29-40.

[18] L. Zhao, A theorem concerning the existence and uniqueness of solutions of the functional equation J. Univ. Sci. Technol. China 32 (1983), 21-27 (special issue math.)(in Chinese).