[1] J. B. Diaz and F. T. Metcalf, On the set of subsequential limit
points of successive approximations, Trans. Amer. Math. Soc. 135
(1969), 459-485.
[2] W. G. Dotson Jr., On Mann iterative process, Trans. Amer. Math.
Soc. 149(1) (1970), 65-73.
[3] M. K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of
quasi-nonexpansive mappings, J. Math. Anal. Appl. 207(1) (1997),
96-103.
[4] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer.
Math. Soc. 44 (1974), 147-150.
[5] W. A. Kirk, Remarks on approximation and approximate fixed points
in metric fixed point theory, Annales Universitatis Mariae
Curie-Sklodowska, Section A 51(2) (1997), 167-178.
[6] H. Kiziltunc and M. Ozdemir, On convergence theorem for nonself
I-nonexpansive mapping in Banach spaces, Appl. Math. Sci. 1(48)
(2007), 2379-2383.
[7] H. Kiziltunc and I. Yildirim, On common fixed point of
nonself-nonexpansive mappings for multi-step iteration in Banach
spaces, Thai. J. Math. 6(2) (2008), 343-349.
[8] H. Y. Lan, Common fixed point iterative process with errors for
generalized asymptotically quasi-nonexpansive mappings, Comput. Math.
Appl. 52 (2006), 1403-1412.
[9] W. R. Mann, Mean value in iteration, Proc. Amer. Math. Soc. 4
(1953), 506-510.
[10] J. Nantadilok, Common fixed point of nonself
I-quasi-nonexpansive mappings for multi-step iteration in
Banach spaces, J. Pure Appl. Math.: Advances and Applications 2(1)
(2009), 87-95.
[11] M. A. Noor, New approximation schemes for general variational
inequalities, J. Math. Anal. Appl. 251 (2000), 217-229.
[12] Z. Opial, Weak convergence of the sequence of successive
approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73
(1967), 591-597.
[13] W. V. Petryshin and T. E. Williamson Jr., Strong and weak
convergence of the sequence of successive approximations for
quasi-nonexpansive mappings, J. Math. Anal. Appl. 43 (1973),
459-497.
[14] B. E. Rhoades and S. M. Soltuz, The equivalence between
Mann-Ishikawa iterations and multi-step iteration, Nonlinear Analysis
58 (2004), 219-228.
[15] B. E. Rhoades and S. Temir, Convergence theorem for
I-nonexpansive mapping, Int. J. Math. Math. Sci. 2006 (2006), Article
ID 63435, 4 pages.
[16] N. Shahzad, Generalized I-nonexpansive maps and best
approximations in Banach spaces, Demon-stratio Mathematica 37(3)
(2004), 597-600.
[17] N. Shahzad and H. Zegeye, Strong convergence of an implicit
iteration process for finite family of generalized asymptotically
quasi-nonexpansive maps, Applied Mathematics and Computation 189
(2007), 1058-1065.
[18] K. K. Tan and H. K. Xu, Approximating fixed points of
nonexpansive mappings by the Ishikawa iterative process, J. Math.
Anal. Appl. 178 (1993), 301-308.
[19] S. Temir and O. Gul, Convergence theorem for I-asymptotically
quasi-nonexpansive mapping in Hilbert space, J. Math. Anal. Appl. 329
(2007), 759-765.
[20] H. Zhou, R. P. Agarwal, Y. J. Cho and Y. S. Kim, Nonexpansive
mappings and iterative methods in uniformly convex Banach spaces,
Georgian Mathematical Journal 9(3) (2002), 591-600.