References

ITERATIVE PROCESS FOR GENERALIZED I-ASYMPTOTICALLY QUASI-NONEXPANSIVE NONSELF MAPPINGS


[1] J. B. Diaz and F. T. Metcalf, On the set of subsequential limit points of successive approximations, Trans. Amer. Math. Soc. 135 (1969), 459-485.

[2] W. G. Dotson Jr., On Mann iterative process, Trans. Amer. Math. Soc. 149(1) (1970), 65-73.

[3] M. K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl. 207(1) (1997), 96-103.

[4] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150.

[5] W. A. Kirk, Remarks on approximation and approximate fixed points in metric fixed point theory, Annales Universitatis Mariae Curie-Sklodowska, Section A 51(2) (1997), 167-178.

[6] H. Kiziltunc and M. Ozdemir, On convergence theorem for nonself I-nonexpansive mapping in Banach spaces, Appl. Math. Sci. 1(48) (2007), 2379-2383.

[7] H. Kiziltunc and I. Yildirim, On common fixed point of nonself-nonexpansive mappings for multi-step iteration in Banach spaces, Thai. J. Math. 6(2) (2008), 343-349.

[8] H. Y. Lan, Common fixed point iterative process with errors for generalized asymptotically quasi-nonexpansive mappings, Comput. Math. Appl. 52 (2006), 1403-1412.

[9] W. R. Mann, Mean value in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.

[10] J. Nantadilok, Common fixed point of nonself I-quasi-nonexpansive mappings for multi-step iteration in Banach spaces, J. Pure Appl. Math.: Advances and Applications 2(1) (2009), 87-95.

[11] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), 217-229.

[12] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.

[13] W. V. Petryshin and T. E. Williamson Jr., Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43 (1973), 459-497.

[14] B. E. Rhoades and S. M. Soltuz, The equivalence between Mann-Ishikawa iterations and multi-step iteration, Nonlinear Analysis 58 (2004), 219-228.

[15] B. E. Rhoades and S. Temir, Convergence theorem for I-nonexpansive mapping, Int. J. Math. Math. Sci. 2006 (2006), Article ID 63435, 4 pages.

[16] N. Shahzad, Generalized I-nonexpansive maps and best approximations in Banach spaces, Demon-stratio Mathematica 37(3) (2004), 597-600.

[17] N. Shahzad and H. Zegeye, Strong convergence of an implicit iteration process for finite family of generalized asymptotically quasi-nonexpansive maps, Applied Mathematics and Computation 189 (2007), 1058-1065.

[18] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iterative process, J. Math. Anal. Appl. 178 (1993), 301-308.

[19] S. Temir and O. Gul, Convergence theorem for I-asymptotically quasi-nonexpansive mapping in Hilbert space, J. Math. Anal. Appl. 329 (2007), 759-765.

[20] H. Zhou, R. P. Agarwal, Y. J. Cho and Y. S. Kim, Nonexpansive mappings and iterative methods in uniformly convex Banach spaces, Georgian Mathematical Journal 9(3) (2002), 591-600.