[1] R. P. Agarwal and R. U. Verma, General implicit variational
inclusion problems based on A-maximal (m)-relaxed monotonicity (AMRM)
frameworks, Appl. Math. Comp. 215 (2009), 367-379.
[2] G. Allen, Variational inequalities, complementarity problems and
duality theorems, J. Math. Anal. Appl. 58 (1977), 1-10.
[3] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley
and Sons, New York, 1984.
[4] C. Baiocchi and A. Capelo, Variational and Quasi-variational
Inequalities, Applications to Free Boundary Problems, John Wiley and
Sons, New York, 1984.
[5] E. Blum and W. Oettli, From optimization and variational
inequalities to equilibrium problems, Math. Student 63 (1994),
123-146.
[6] K. Fan, Some properties of convex sets related to fixed points
theorems, Math. Ann. 266 (1984), 519-537.
[7] F. Gianessi, Theorems of Alternative, Quadratic Programs and
Complementarity Problems, Variational Inequalities and Complementarity
Problems (edited by R. W. Cottle, F. Gianessi and J. L. Lions), John
Wiley and Sons, Chichester, England, (1980), 151-186.
[8] N. -J. Huang and J. Li, F-implicit complementarity problems in
Banach spaces, Z. Anal. Anwendungen. 23 (2004), 293-302.
[9] L. G. Huang and X. Zhang, Cone metric spaces and fixed point
theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007),
1468-1476.
[10] B. S. Lee and A. P. Farajzadeh, Generalized vector implicit
complementarity problems with corresponding variational inequality
problems, Appl. Math. Lett. 21 (2008), 1095-1100.
[11] J. Li and N. -J. Huang, Vector F-implicit complementarity
problems in Banach spaces, Appl. Math. Lett. 19 (2006), 464-471.
[12] L. -J. Lin, Some results on systems of quasi-variational
inclusion problems and systems of generalized quasi-variational
inclusion problems, Nonlinear Anal. TMA 72 (2010), 37-49.
[13] M. A. Noor, Extended general variational inequalities, Appl.
Math. Lett. 22 (2009), 182-186.
[14] M. -M. Wong, Q. H. Ansari and J. -C. Yao, Existence of solutions
of generalized variational inequalities in reflexive Banach spaces,
Appl. Math. Lett. 22 (2009), 197-201.
[15] G. X. Z. Yuan, KKM Theory and Applications in Nonlinear Analysis,
Pure and Applied Mathematics, Marcel Dekker, 218, New York, 1999.