[1] Ronald R. Coifman and Guido Weiss, Analyse Harmonique
Non-commutative Sur Certains Espaces Homogènes, Lecture Notes in
Mathematics, Vol. 242, Springer, Berlin, Heidelberg, New York,
1971.
[2] Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and
their use in analysis, Bull. Amer. Math. Soc. 83(4) (1977),
569-645.
[3] G. David and S. Semmes, Analysis of and on Uniformly Rectifiable
Sets, Mathematical Surveys and Monographs, Vol. 38, American
Mathematical Society, Providence, Rhode Island, 1991.
[4] O. Dovgoshey and J. Riihentaus, Bi-Lipschitz and quasi-nearly
subharmonic functions, International Journal of Mathematics and
Mathematical Sciences/New Trends in Geometric Function Theory 2010
(2010), Article ID 382179, 8 pages, (doi:10.1155/2010/382179).
[5] O. Dovgoshey and J. Riihentaus, A remark concerning generalized
mean value inequalities for subharmonic functions, submitted.
[6] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129
(1972), 137-192.
[7] F. W. Gehring, On the radial order of subharmonic functions, J.
Math. Soc. Japan 9 (1957), 77-79.
[8] Zbigniew Grande, Quasicontinuity and measurability of functions of
two variables, Real Analysis Exchange 28 (2002), 7-14.
[9] D. J. Hallenbeck, Radial growth of subharmonic functions, Pitman
Research Notes 262 (1992), 113-121.
[10] M. Hervé, Analytic and Plurisubharmonic Functions in Finite
and Infinite Dimensional Spaces, Lecture Notes in Mathematics, Vol.
198, Springer-Verlag, Berlin, 1971.
[11] B. E. Johnson, Separate continuity and measurability, Proc. Amer.
Math. Soc. 20 (1969), 420-422.
[12] V. Kojić, Quasi-nearly subharmonic functions and conformal
mappings, Filomat. 21(2) (2007), 243-249.
[13] Ü. Kuran, Subharmonic behavior of ( harmonic), J. London Math. Soc. 8(2)
(1974), 529-538.
[14] Jaroslav Lukeš and Jan Malý, Measure and Integral,
Matfyzpress, Publishing House of the Faculty of Mathematics and
Physics, Charles University, Prague, 1995.
[15] Pertti Mattila, Geometry of Sets and Measures in Euclidean
Spaces, Cambridge Studies in Advanced Mathematics, Vol. 44, Cambridge
University Press, Cambridge, 1995.
[16] Y. Mizuta, Boundary limits of functions in weighted Lebesgue or
Sobolev classes, Revue Roum. Math. Pures Appl. 46 (2001), 67-75.
[17] M. Pavlović, Mean values of harmonic congugates in the unit
disc, Complex Variables 10 (1988), 53-65.
[18] M. Pavlović, On subharmonic behavior and oscillation of
functions on balls in Publ. Inst. Math. (Beograd) 55(69) (1994),
18-22.
[19] M. Pavlović, On subharmonic behavior of smooth functions,
Matematichki Vesnik 48 (1996), 15-21.
[20] M. Pavlović and J. Riihentaus, Classes of quasi-nearly
subharmonic functions, Potential Anal. 29 (2008), 89-104.
[21] M. Pavlović, An inequality related to Gehring-Hallenbeck
theorem on radial limits of functions in harmonic Bergman spaces,
Glasgow Math. J. 50(3) (2008), 433-435.
[22] M. Pavlović and J. Riihentaus, Quasi-nearly subharmonic
functions in locally uniformly homogeneous spaces, Positivity, to
appear, (doi:10.1007/s11117-009-0037- 0).
[23] J. Riihentaus, On a theorem of Avanissian-Arsove, Expo. Math. 7
(1989), 69-72.
[24] J. Riihentaus, Subharmonic functions: Non-tangential and
tangential boundary behavior, Function Spaces, Differential Operators
and Nonlinear Analysis (FSDONA’99), Proceedings of the Syöte
Conference 1999, V. Mustonen, J. Rákosnik (eds.), Math. Inst.,
Czech Acad. Science, Praha, (2000), 229-238.
[25] J. Riihentaus, A generalized mean value inequality for
subharmonic functions, Expo. Math. 19 (2001), 187-190.
[26] J. Riihentaus, Subharmonic functions, mean value inequality,
boundary behavior, nonintegrability and exceptional sets,
International Workshop on Potential Theory and Free Boundary Flows,
Kiev, Ukraine, August 19-27, 2003, Transactions of the Institute of
Mathematics of the National Academy of Sciences of Ukraine 1(1)
(2004), 169-191.
[27] J. Riihentaus, Weighted boundary behavior and nonintegrability of
subharmonic functions, International Conference on Education and
Information Systems: Technologies and Applications (EISTA’04),
Orlando, Florida, USA, July 21-25, 2004, Proceedings, M. Chang, Y.-T.
Hsia, F. Malpica, M. Suarez, A. Tremante, F. Welsch (eds.), Vol. II,
2004, pp. 196-202.
[28] J. Riihentaus, A weighted boundary limit result for subharmonic
functions, Adv. Algebra and Analysis 1 (2006), 27-38.
[29] J. Riihentaus, Separately quasi-nearly subharmonic functions,
Complex Analysis and Potential Theory, Proceedings of the Conference
Satellite to ICM 2006, Tahir Aliyev AzeroÄŸlu, Promarz M. Tamrazov
(eds.), Gebze Institute of Technology, Gebze, Turkey, September 8-14,
2006, World Scientific, Singapore, (2007), 156-165.
[30] J. Riihentaus, Subharmonic functions, generalizations and
separately subharmonic functions, 14th Conference on Analytic
Functions, July 22-28, 2007, Chełm, Poland, Scientific Bulletin of
Chełm, Section of Mathematics and Computer Science 2
(2007), 49-76, (arXiv:math/0610259v5 [math.AP] 8 Oct 2008).
[31] J. Riihentaus, Quasi-nearly subharmonicity and separately
quasi-nearly subharmonic functions, J. Inequal. Appl. 2008 (2008),
Article ID 149712, 15 pages, (doi: 10.1155/2008/149712)
(arXiv:0802.3505v2 [math.AP] 16 Oct 2008).
[32] J. Riihentaus, On an inequality related to the radial growth of
subharmonic functions, Cubo, A Mathematical Journal 11(4) (2009),
127-136.
[33] J. Riihentaus, Subharmonic functions, generalizations, weighted
boundary behavior, and separately subharmonic functions: A survey,
Fifth World Congress of Nonlinear Analysts (WCNA 2008), Orlando,
Florida, USA, July 2-9, 2008, Nonlinear Analysis, Series A: Theory,
Methods & Applications 71(12) (2009), 2613-2627.
[34] Walter Rudin, Lebesgue’s First Theorem, Mathematical
Analysis and Applications, Part B, pp. 741-747, Advances in
Mathematics Supplementary Studies, Vol. 7B, Academic Press, New York,
London, 1981.
[35] W. Sierpiński, Sur un problème concernant les ensembles
mesurables superficiellement, Fund. Math. 1 (1920), 112-115.
[36] M. Stoll, Invariant Potential Theory in the Unit Ball of
London Mathematical Society Lecture Notes
Series, Cambridge, 1994.
[37] M. Stoll, Boundary limits and non-integrability of -subharmonic functions in the unit ball of
Trans. Amer. Math. Soc. 349 (1997),
3773-3785.
[38] M. Stoll, Weighted tangential boundary limits of subharmonic
functions on domains in Math. Scand. 83 (1998), 300-308.
[39] A. Torchinsky, Real-Variable Methods in Harmonic Analysis,
Academic Press, London, 1986.
[40] M. Vuorinen, On the Harnack constant and the boundary behavior of
Harnack functions, Ann. Acad. Sci. Fenn., Ser. A I, Math. 7 (1982),
259-277.