References

AN ALGORITHM OF A MINIMUM COST FLOW PROBLEM WITH TIME-VARYING AND TIME-WINDOWS


[1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory, Algorithms and Applications, Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] R. K. Ahuja, A. V. Goldberg, J. B. Orlin and R. E. Tarjan, Finding minimum-cost flows by double scaling, Mathematical Programming 53(1-3) (1992), 243-266.
DOI: https://doi.org/10.1007/BF01585705

[3] R. G. Busacker and P. J. Gowen, A Procedure for Determining a Family of Minimum Cost Network Flow Patterns, Technical Report 15, Operation Research, Johns Hopkins University, 1961.

[4] X. Cai, T. Kloks and C. K. Wong, Time-varying shortest path problems with constraints, Networks 29(3) (1997), 141-150.
DOI: https://doi.org/10.1002/(SICI)1097-0037(199705)29:3<141::AID-NET2>3.0. CO;2-H

[5] L. Ciupala and E. Ciurea, About perflow algorithms for the minimum flow problem, WSEAS Transactions on Computer Research 3(1) (2008), 35-42.

[6] E. Ciurea and A. Deaconu, Minimum flows in bipartite networks with unit capacities, Proceedings of the 13th WSEAS International Conference on Computer (2009), 313-317.

[7] J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems, Journal of the ACM 19(2) (1972), 248-264.
DOI: https://doi.org/10.1145/321694.321699

[8] N. A. El-Sherbeny, Resolution of a Vehicle Routing Problem with a Multi-Objective Simulated Annealing Method, Ph.D. Dissertation, Faculty of Science, Mons University, Mons, Belgium, 2002.

[9] N. A. El-Sherbeny, Algorithm of fuzzy maximum flow problem with fuzzy time-windows in hyper network, International Journal of Pure and Applied Mathematics 116(4) (2017), 863-874.
DOI: http://dx.doi.org/10.12732/ijpam.v116i4.6

[10] N. El-Sherbeny and D. Tuyttens, Optimization Multicriteria of Routing Problem, Troisieme Journée de Travail sur la Programming Mathématique Multi-Objective, Faculté Polytechnique de Mons, Mons, Belgique, 2001.

[11] N. A. El-Sherbeny, Imprecision and flexible constraints in fuzzy vehicle routing problem, American Journal of Mathematical and Management Sciences 31(1-2) (2011), 55-71.
DO: https://doi.org/10.1080/01966324.2011.10737800

[12] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, NJ, 1962.

[13] L. R. Ford and D. R. Fulkerson, Maximal flow through a network, Canadian Journal of Mathematics 8 (1956), 399-404.
DOI: http://dx.doi.org/10.4153/CJM-1956-045-5

[14] A. V. Goldberg and R. E. Tarjan, Finding minimum-cost circulations by successive approximation, Mathematics of Operation Research 15(3) (1990), 430-466.
DOI: https://doi.org/10.1287/moor.15.3.430

[15] D. Lozovanu and S. Pickl, A special dynamic programming technique for multiobjective discrete control and for dynamic games on graph-based methods, CTWO4 Workshop on Graphs and Combinatorial Optimization, Milano, (2004), 184-188.

[16] D. Tuyttens, J. Teghem and N. El-Sherbeny, A particular multiobjective vehicle routing problem solved by simulated annealing, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, Germany, 535 (2004), 133-152.
DOI: https://doi.org/10.1007/978-3-642-17144-4_5