References

GLOBAL DYNAMICS OF SOME FRACTIONAL DIFFERENCE EQUATIONS


[1] E. Camouzis and G. Ladas, Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjectures, Chapman and Hall/CRC, 2007.

[2] E. Camouzis and G. Ladas, When does local asymptotic stability imply global attractivity in rational equations?, Journal of Difference Equations and Applications 12(8) (2006), 863-885.
DOI: https://doi.org/10.1080/10236190600772663

[3] M. Dipippo, Global Dynamics of Some Quadratic Difference Equations, University of Rhode Island, 2016.

[4] H. El-Metwally, E. A. Grove and G. Ladas, A global convergence result with applications to periodic solutions, Journal of Mathematical Analysis and Applications 245(1) (2000), 161-170.
DOI: https://doi.org/10.1006/jmaa.2000.6747

[5] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, Global attractivity and periodic character of a fractional difference equation of order three, Yokohama Mathematical Journal 53 (2007), 89-100.

[6] H. El-Metwally, Qualitative properties of some higher order difference equations, Computers & Mathematics with Applications 58(4) (2009), 686-692.
DOI: https://doi.org/10.1016/j.camwa.2009.03.092

[7] H. El-Metwally and E. M. Elsayed, Qualitative behavior of some rational difference equations, Journal of Computational Analysis and Applications 20(2) (2016), 226-236.

[8] E. M. Elsayed and H. El-Metwally, Global behavior and periodicity of some difference equations, Journal of Computational Analysis and Applications 19(2) (2015), 298-309.

[9] H. El-Metwally, I. Yalcinkaya and C. Cinar, Global stability of an economic model, Utilitas Mathematica 95 (2014), 235-244.

[10] M. Garić-Demirović, M. R. S. Kulenović and M. Nurkanović, Global dynamics of certain homogeneous second-order quadratic fractional difference equation, The Scientific World Journal (2013), Article ID 210846, pages 1-10.
DOI: http://dx.doi.org/10.1155/2013/210846

[11] M. Garić-Demirović, M. R. S. Kulenović and M. Nurkanović, Basins of attraction of equilibrium points of second order difference equations, Applied Mathematics Letters 25(12) (2012), 2110-2115.
DOI: https://doi.org/10.1016/j.aml.2012.05.009

[12] C. Gibbons, M. R. S. Kulenović and G. Ladas, On the recursive sequence Mathematical Sciences Research Hotline 4(2) (2000), 1-11.

[13] S. J. Hrustić, M. R. S. Kulenović and M. Nurkanović, Global dynamics and bifurcations of certain second order rational difference equation with quadratic terms, Qualitative Theory of Dynamical Systems 15(1) (2016), 283-307.
DOI: https://doi.org/10.1007/s12346-015-0148-x

[14] S. Jašarević and M. R. S. Kulenović, Basins of attraction of equilibrium and boundary points of second-order difference equations, Journal of Difference Equations and Applications 20(5-6) (2014), 947-959.
DOI: https://doi.org/10.1080/10236198.2013.855733

[15] S. Kalabušic, M. R. S. Kulenović and E. Pilav, Global dynamics of anti-competitive systems in the plane, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 20(4) (2013), 477-505.

[16] M. R. S. Kulenović and G. Ladas, Dynamics of second order rational difference equations: With open problems and conjectures, Chapman and Hall/CRC, 2001.

[17] M. R. S. Kulenović, S. Moranjkic and Z. Nurkanovic, Naimark-Sacker bifurcation of second order rational difference equation with quadratic terms, Journal of Nonlinear Sciences and Applications 10(7) (2017), 3477-3489.
DOI: http://dx.doi.org/10.22436/jnsa.010.07.11

[18] M. R. S. Kulenović, and O. Merino, Global bifurcation for discrete competitive systems in the plane, Discrete & Continuous Dynamical Systems-B 12(1) (2009), 133-149.
DOI: http://dx.doi.org/10.3934/dcdsb.2009.12.133

[19] M. R. S. Kulenović, and O. Merino, Invariant manifolds for competitive discrete systems in the plane, International Journal of Bifurcation and Chaos 20(8) (2010), 2471-2486.
DOI: https://doi.org/10.1142/S0218127410027118

[20] M. R. S. Kulenović, S. Moranjkić and Z. Nurkanović, Global dynamics and bifurcation of a perturbed Sigmoid Beverton-Holt difference equation, Mathematical Methods in the Applied Sciences 39(10) (2016), 2696-2715.
DOI: https://doi.org/10.1002/mma.3722

[21] M. R. S. Kulenović and O. Merino, Discrete Dynamical Systems and Difference Equations with Mathematica, CRC Press, 2002.

[22] G. L. Karakostas, A discrete semi-flow in the space of sequences and study of convergence of sequences defined by difference equations, M. E. Greek Math. Soc. 30 (1989), 66-74.

[23] M. Pituk, More on Poincaré’s and Perron’s Theorems for Difference Equations, Journal of Difference Equations and Applications 8(3) (2002), 201-216.
DOI: https://doi.org/10.1080/10236190211954