[1] Theodoros Alexopoulos and Stefanos Leontsinis, Benford’s
law in astronomy, Journal of Astrophysics and Astronomy 35(4) (2014),
639-648.
DOI: https://doi.org/10.1007/s12036-014-9303-z
[2] Pieter C. Allaart, An invariant-sum characterization of
Benford’s law, Journal of Applied Probability 34(1) (1997),
288-291.
DOI: https://doi.org/10.2307/3215195
[3] Frank Benford, The law of anomalous numbers, Proceedings of the
American Philosophical Society 78(4) (1938), 551-572.
[4] Arnold Berger and Theodore P. Hill, Benford Online Bibliography,
2009.
[5] Arnold Berger and Theodore P. Hill, A basic theory of
Benford’s law, Probability Surveys 8 (2011), 1-126.
DOI: https://doi.org/10.1214/11-PS175
[6] Persi Diaconis, The distribution of leading digits and uniform
distribution mod 1, The Annals of Probability 5(1) (1977), 72-81.
DOI: https://doi.org/10.1214/aop/1176995891
[7] Theodore P. Hill, Base-invariance implies Benford’s law,
Proceedings of the American Mathematical Society 123(3) (1995),
887-895.
DOI: https://doi.org/10.1090/S0002-9939-1995-1233974-8
[8] Azar Khosravani and Constantin Rasinariu, n-Digit Benford
distributed random variables, Advances and Applications in Statistics
36(2) (2013), 119-130.
[9] Lawrence M. Leemis, Bruce W. Schmeiser and Diane L. Evans,
Survival distributions satisfying Benford’s law, American
Statistician 54(4) (2000), 236-241.
[10] Simon Newcomb, Note on the frequency of use of the different
digits in natural numbers, American Journal of Mathematics 4(1)
(1881), 39-40.
[11] Mark J. Nigrini, The Detection of Income Tax Evasion Through an
Analysis of Digital Frequencies, Ph.D. Thesis, University of
Cincinnati, OH, USA, 1992.
[12] Mark J. Nigrini, Benford’s Law: Applications for Forensic
Accounting, Auditing, and Fraud, Detection, Wiley, 2012.
[13] Roger S. Pinkham, On the distribution of first significant
digits, The Annals of Mathematical Statistics 32(4) (1961),
1223-1230.
[14] Raplh A. Raimi, The first digit problem, The American
Mathematical Monthly 83(7) (1976), 521-538.
DOI: https://doi.org/10.2307/2319349
[15] Mathematica, Version 11.3, Wolfram Research, Inc., Champaign, IL,
2018.