References

THE ALPHA-BETA-SYMMETRIC DIVERGENCE AND THEIR POSITIVE DEFINITE KERNELS


[1] Andrzej Cichocki, Sergio Cruces and Shun-ichi Amari, Log-determinant revisited: Alpha-beta and gamma log-det divergences, Entropy 17(5) (2015), 2988-3034.
DOI: https://doi.org/10.3390/e17052988

[2] Andrzej Cichocki, Sergio Cruces and Shun-ichi Amari, Generalized alpha-beta divergences and their application to robust nonnegative matrix factorization, Entropy 13(1) (2011), 134-170.
DOI: https://doi.org/10.3390/e13010134

[3] Asa Ben-Hur and Willian Stafford Noble, Kernel methods for predicting protein-protein-interactions, Bioinformatics 21(1) (2005), i38-i46.
DOI: https://doi.org/10.1093/bioinformatics/bti1016

[4] B. Frénay and M. Verleysen, Parameter-insensitive kernel in extreme learning for nonlinear support vector regression, Neurocomputing 74(16) (2011), 2526-2531.
DOI: https://doi.org/10.1016/j.neucom.2010.11.037

[5] B. Fuglede, Spirals in Hilbert space: With an application in information theory, Expositiones Mathematicae 23(1) (2005), 23-45.
DOI: https://doi.org/10.1016/j.exmath.2005.01.014

[6] B. Schölkopf and A. Smola, Learning with Kernels, MIT Press, Cambridge, MA, 2002.

[7] Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf and Gert R. G. Lanckriet, Hilbert space embeddings and metrics on probability measures, Journal of Machine Learning Research 11 (2010), 1517-1561.

[8] Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[9] C. Cortes and V. Vapnik, Support-vector networks, Machine Learning 20(3) (1995), 273-297.
DOI: https://doi.org/10.1007/BF00994018

[10] D. B. Thiyam, S. Cruces, J. Olias and A. Cichocki, Optimization of alpha-beta log-det divergences and their application in the spatial filtering of two class motor imagery movements, Entropy 19(3) (2017), Article 89.
DOI: https://doi.org/10.3390/e19030089

[11] D. Olszewski and B. Ster, Asymmetric clustering using the alpha-beta divergence, Pattern Recognition 47(5) (2014), 2031-2041.
DOI: https://doi.org/10.1016/j.patcog.2013.11.019

[12] F. Topsøe, Jenson-Shannon divergence and norm-based measures of discrimination and variation, Preprint (2003).

[13] Trevor Hastie, Robert Tibshirani and Jerome Friedman, The Elements of Statistical Learning, Springer Series in Statistics, 2001.

[14] Ho Chung Leon Law, Dougal J. Sutherland, Dino Sejdinovic and Seth Flanman, Bayesian Approaches to Distribution Regression, Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), Lanzarote, Spain, PMLR: Volume 84 (2018).

[15] I. J. Schoenberg, Metric space and positive definite functions, Transactions of the American Mathematical Society 44(3) (1938), 522-536.
DOI: https://doi.org/10.1090/S0002-9947-1938-1501980-0

[16] F. Amara, M. Fezari and H. Bourouba, An improved GMM-SVM system based on distance metric for voice pathology detection, Applied Mathematics and Information Sciences An International Journal 10(3) (2016), 1061-1070.
DOI: https://doi.org/10.18576/amis/100324

[17] I. W. Sumarjaya, A survey of kernel-type estimators for copula and their applications, Journal of Physics: Conference Series 893 (2017), Article 012027.
DOI: https://doi.org/10.1088/1742-6596/893/1/012027

[18] J. Lafferty and G. Lebanon, Diffusion kernels on statistical manifolds, Journal of Machine Learning Research 6 (2005), 129-163.

[19] C. van den Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups, Springer, New York 29 (1984), 438.

[20] John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis, 2004.

[21] K. Muandet, K. Fukumizu, B. Sriperumbudur and B. Schölkopf, Kernel mean embedding of distribution: A review and beyond, Foundations and trends in Machine Learning 10(1-2) (2017), 1-141.
DOI: http://dx.doi.org/10.1561/2200000060

[22] M. Hein, T. N. Lal and O. Bousquet, Hilbertian Metrics on Probability Measures and their Application in SMVs, Accepted at DAGM Springer 3175 (2004), 270-277.

[23] M. Hein, O. Bousquet and B. Schölkopf, Maximal margin classification for metric spaces, Journal of Computer and System Sciences 71(3) (2005), 333-359.
DOI: https://doi.org/10.1016/j.jcss.2004.10.013

[24] M. Hein and O. Bousquet, Maximal margin classification for metric spaces, In 16th Annual Conference on Learning Theory (COLT), 2003.

[25] O. Chapelle, P. Haffner and V. Vapnik, Support vector machines for histogram-based image classification, IEEE Transaction on Neural Networks 10(5) (1999), 1055-1064.
DOI: https://doi.org/10.1109/72.788646

[26] P. J. Moreno, P. P. Ho and N. Vasconcelos, A Kullback-Leibler divergence based kernel for SVM classification in multimedia application, NIPS 16 (2003).

[27] T. Jebara and R. Kondor, Bhattacharyya and Expected Likelihood Kernels, In 16th Annual Conference on Learning Theory (COLT) (2003), 57-71.

[28] T. J. Abrahamsen, L. K. Hansen and O. Winther, Kernel Methods for Machine Learning with Life Science Applications, Technical University of Denmark (DTU), PHD, No. 299, 2013.

[29] V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.