References

MODIFIED EXTENDED TANH-FUNCTION METHOD TO GENERALIZED NONLINEAR DISPERSIVE EQUATION


[1] P. Rosenau and J. M. Hyman, Solutions with finite wavelengths, Physical Review Letters 70(5) (1993), 564-567.
DOI: https://doi.org/10.1103/PhysRevLett.70.564

[2] A. M. Wazwaz, General compactons solutions and solitary patterns solutions for modified nonlinear dispersive equations in higher dimensional spaces, Mathematics and Computers in Simulation 59(5) (2002), 519-531.
DOI: https://doi.org/10.1016/S0378-4754(01)00439-6

[3] Y. Chen, B. Li and H. Q. Zhang, New exact solutions for modified nonlinear dispersive equations in higher dimensions spaces, Mathematics and Computers in Simulation 64(5) (2004), 549-559.
DOI: https://doi.org/10.1016/j.matcom.2003.10.005

[4] F. D. Xie, X. Sh. Gao and F. Liu, Conservation laws of and equations, Communications in Theoretical Physics 42(5) (2004), 661-663.
DOI: https://doi.org/10.1088/0253-6102/42/5/661

[5] S. Y. Lai, J. B. He and Y. Qing, A new study for the modified nonlinear dispersive equations in higher dimensional spaces, International Journal of Pure and Applied Mathematics 51(1) (2009), 1-9.

[6] Y. X. Yu, New compacton solutions and solitary pattern solutions for modified nonlinearly dispersive mK(m, n, a, b) equation, Communications in Theoretical Physics 52(4) (2009), 637-640.
DOI: https://doi.org/10.1088/0253-6102/52/4/17

[7] W. Malfliet, Solitary wave solutions of nonlinear wave equations, American Journal of Physics 60(7) (1992), 650-654.
DOI: https://doi.org/10.1119/1.17120

[8] W. Malfliet and W. Hereman, The tanh method I: Exact solutions of nonlinear evolution and wave equations, Physica Scripta 54(6) (1996), 563-568.
DOI: https://doi.org/10.1088/0031-8949/54/6/003

[9] W. Malfliet and W. Hereman, The tanh method II: Perturbation technique for conservative systems, Physica Scripta 54(6) (1996), 569-575.
DOI: https://doi.org/10.1088/0031-8949/54/6/004

[10] W. Hereman and W. Malfliet, The Tanh method: A tool to solve nonlinear partial differential equations with symbolic software, Proceedings 9th World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, FL (2005), 165-168.

[11] E. G. Fan, Extended tanh-function method and its applications to nonlinear equations, Physics Letters A 277(4-5) (2000), 212-218.
DOI: https://doi.org/10.1016/S0375-9601(00)00725-8

[12] Z. S. Lu and H. Q. Zhang, On a new modified extended tanh-function method, Communications in Theoretical Physics 39(4) (2003), 405-408.
DOI: https://doi.org/10.1088/0253-6102/39/4/405

[13] E. M. E. Zayed and K. A. E. Alurrfi, The modified extended tanh-function method and its applications to the generalized KdV-mKdV equation with any-order nonlinear terms, International Journal of Environmental Engineering Science and Technology Research 1(8) (2013), 165-170.

[14] E. H. M. Zahran and M. M. A. Khater, Modified extended tanh-function method and its applications to the Bogoyavlenskii equation, Applied Mathematical Modelling 40(3) (2016), 1769-1775.
DOI: https://doi.org/10.1016/j.apm.2015.08.018