References

FRAMES, FRACTALS AND RADIAL OPERATORS IN HILBERT SPACE


[1] L. Bartholdi, R. Grigorchuk and V. Nekrashevych, From fractal groups to fractal sets, arXiv:math.GR/0202001v4, preprint (2002).

[2] I. Cho, Direct produced probability spaces and corresponding amalgamated free stochastic integration, B. KMS 44(1) (2007), 131-150.

[3] I. Cho, Graph von Neumann algebras, ACTA Appl. Math. 95 (2007), 95-135.

[4] I. Cho, Characterization of free blocks of a right graph von Neumann algebra, Compl. An. & Op. Theory (to be appeared) (2007).

[5] I. Cho, Measures on graphs and groupoid measures, CAOT 2 (2008), 1-28.

[6] I. Cho, Group-freeness and certain amalgamated freeness, J. KMS 45(3) (2008), 597-609.

[7] I. Cho, Graphs and radial operators of graph groupoids, submitted to J. KMS (2008).

[8] I. Cho, Vertex-compressed algebras of a graph von Neumann algebra, ACTA Appl. Math., to appear (2008).

[9] I. Cho and P. E. T. Jorgensen, Graph fractaloids: Graph groupoids with fractal property, preprint (2008).

[10] I. Cho, Fractals on graphs, VDM Monograph Series, to appear (2009).

[11] I. Cho, Operator algebraic quotient structures induced by graphs, CAOT, to appear (2009).

[12] I. Cho, Algebras induced by partial isometries with fractal property, CAOT, to appear (2009).

[13] I. Cho and P. E. T. Jorgensen, Algebras generated by partial isometries, JAMC, to appear (2009).

[14] I. Cho and P. E. T. Jorgensen, Subalgebras generated by partial isometries, JMP, to appear (2009).

[15] I. Cho and P. E. T. Jorgensen, Applications of automata and graphs: Labelling-operators in Hilbert space I, ACTA Appl. Math., to appear (2009).

[16] I. Cho and P. E. T. Jorgensen, Applications of automata and graphs: Labelling-operators in Hilbert space II, JMP, to appear (2009).

[17] I. Cho and P. E. T. Jorgensen, Subalgebras generated by single operator in B(H), ACTA Appl. Math.: Special Issues, to appear (2009).

[18] I. Cho, Dynamical systems induced by partial isometries, CAOT, to appear (2009).

[19] I. Cho and P. E. T. Jorgensen, Classification of graph fractaloids, preprint (2009).

[20] I. Cho and P. E. T. Jorgensen, Measure framing on graphs and von Neumann algebras, preprint (2009).

[21] I. Cho, Operations on Graphs, Groupoids, and Operator Algebras, LAP Publisher, ISBN: 978-8383-5271-8, (2010).

[22] W. Dicks and E. Ventura, The group fixed by a family of injective endomorphisms of a free group, Contemp. Math, AMS 195.

[23] D. E. Dutkay and P. E. T. Jorgensen, Iterated function systems, Ruelle operators and invariant projective measures, arXiv:math.DS/0501077/v3, preprint (2005).

[24] R. Exel, A new look at the crossed-product of a algebra by a semigroup of endomorphisms, preprint (2005).

[25] A. Gibbons and L. Novak, Hybrid Graph Theory and Network Analysis, Cambridge Univ. Press, ISBN: 0-521-46117-0 (1999).

[26] A. Gill, Introduction to the Theory of Finite-State Machines, MR0209083 (34\\\\\\\\#8891), McGraw-Hill Book Co., 1962

[27] R. Gliman, V. Shpilrain and A. G. Myasnikov (editors), Computational and statistical group theory, Contemporary Math, AMS 298 (2001).

[28] D. Guido, T. Isola and M. L. Lapidus, A trace on fractal graphs and the Ihara Zeta function, arXiv:math.OA/0608060v1, preprint 34 (2006).

[29] P. E. T. Jorgensen, L. M. Schmitt and R. F. Werner, q-Canonical commutation relations and stability of the Cuntz algebra, Pac. J. Math. 165(1) (1994), 131-151.

[30] P. E. T. Jorgensen, Use of operator algebras in the analysis of measures from wavelets and iterated function systems, preprint (2005).

[31] P. E. T. Jorgensen and M. Song, Entropy encoding, Hilbert spaces, and Kahunen-Loeve transforms, JMP 48(10) (2007).

[32] J. Kigami, R. S. Strichartz and K. C. Walker, Constructing a Laplacian on the diamond fractal, Experiment. Math. 10(3) (2001), 437-448.

[33] D. W. Kribs and M. T. Jury, Ideal structure in free semigroupoid algebras from directed graphs, preprint.

[34] I. V. Kucherenko, On the structurization of a class of reversible cellular automata, Diskret. Mat. 19(3) (2007), 102-121.

[35] D. A. Lind, Entropies of automorphisms of a topological Markov shift, Proc. AMS 99(3) (1987), 589-595.

[36] D. A. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge Univ. Press, 1995.

[37] C. W. Marshall, Applied Graph Theory, John Wiley & Sons, ISBN: 0-471-57300-0 (1971).

[38] P. D. Mitchener, Categories, groupoid actions, equivalent KK-theory, and the Baum-Connes conjecture, arXiv:math.KT/0204291v1, preprint (2005).

[39] A. G. Myasnikov and V. Shapilrain (editors), Group theory, statistics and cryptography, Contemporary Math, AMS 360 (2003).

[40] P. Potgieter, Nonstandard analysis, fractal properties and Brownian motion, arXiv:math.FA/0701649v1, preprint (2007).

[41] F. Radulescu, Random matrices, amalgamated free products and subfactors of the algebra of a free group of noninteger index, Invent. Math. 115 (1994), 347-389.

[42] I. Raeburn, Graph Algebras, CBMS no 3, AMS (2005).

[43] R. Scapellato and J. Lauri, Topics in Graph Automorphisms and Reconstruction, London Math. Soc., Student Text 54, Cambridge Univ. Press (2003).

[44] J. L. Schiff, Cellular Automata, Discrete View of the World, Wiley-Interscience Series in Disc. Math. & Optimazation, John Wiley & Sons Press, ISBN: 978-0-470-16879-0, (2008).

[45] T. Shirai, The spectrum of infinite regular line graphs, Trans. AMS. 352(1) (2000), 115-132.

[46] B. Solel, You can see the arrows in a Quiver operator algebras, preprint (2000).

[47] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, AMS Mem. 132(627) (1998).

[48] S. Thompson and I. Cho, Powers of Mutinomials in Commutative Algebras, Undergrad. Research, Dept. Math., St. Ambrose Univ., 2008.

[49] S. Thompson, C. M. Mendoza, A. J. Kwiatkowski and I. Cho, Lattice Paths Satisfying the Axis Property, Undergrad. Research, Dept. Math., St. Ambrose Univ., 2008.

[50] V. Vega, Finite Directed Graphs and Correspondences, Ph.D thesis, Univ. of Iowa, 2007.

[51] D. Voiculescu, K. Dykemma and A. Nica, Free random variables, CRM Monograph Series 1 (1992).

[52] S. H. Weintraub, Representation theory of finite groups: Algebra and arithmetic, Grad. Studies in Math., AMS 59 (2003).