[1] L. Bartholdi, R. Grigorchuk and V. Nekrashevych, From fractal
groups to fractal sets, arXiv:math.GR/0202001v4, preprint (2002).
[2] I. Cho, Direct produced probability spaces and corresponding
amalgamated free stochastic integration, B. KMS 44(1) (2007),
131-150.
[3] I. Cho, Graph von Neumann algebras, ACTA Appl. Math. 95 (2007),
95-135.
[4] I. Cho, Characterization of free blocks of a right graph von
Neumann algebra, Compl. An. & Op. Theory (to be appeared) (2007).
[5] I. Cho, Measures on graphs and groupoid measures, CAOT 2 (2008),
1-28.
[6] I. Cho, Group-freeness and certain amalgamated freeness, J. KMS
45(3) (2008), 597-609.
[7] I. Cho, Graphs and radial operators of graph
groupoids, submitted to J. KMS (2008).
[8] I. Cho, Vertex-compressed algebras of a graph von Neumann algebra,
ACTA Appl. Math., to appear (2008).
[9] I. Cho and P. E. T. Jorgensen, Graph fractaloids: Graph groupoids
with fractal property, preprint (2008).
[10] I. Cho, Fractals on graphs, VDM Monograph Series, to appear
(2009).
[11] I. Cho, Operator algebraic quotient structures induced by graphs,
CAOT, to appear (2009).
[12] I. Cho, Algebras induced by partial isometries with
fractal property, CAOT, to appear (2009).
[13] I. Cho and P. E. T. Jorgensen, Algebras generated by partial isometries,
JAMC, to appear (2009).
[14] I. Cho and P. E. T. Jorgensen, Subalgebras generated by partial isometries,
JMP, to appear (2009).
[15] I. Cho and P. E. T. Jorgensen, Applications of automata and
graphs: Labelling-operators in Hilbert space I, ACTA Appl. Math., to
appear (2009).
[16] I. Cho and P. E. T. Jorgensen, Applications of automata and
graphs: Labelling-operators in Hilbert space II, JMP, to appear
(2009).
[17] I. Cho and P. E. T. Jorgensen, Subalgebras generated by single operator in
B(H), ACTA Appl. Math.: Special Issues, to appear
(2009).
[18] I. Cho, Dynamical systems induced by partial
isometries, CAOT, to appear (2009).
[19] I. Cho and P. E. T. Jorgensen, Classification of graph
fractaloids, preprint (2009).
[20] I. Cho and P. E. T. Jorgensen, Measure framing on graphs and von
Neumann algebras, preprint (2009).
[21] I. Cho, Operations on Graphs, Groupoids, and Operator Algebras,
LAP Publisher, ISBN: 978-8383-5271-8, (2010).
[22] W. Dicks and E. Ventura, The group fixed by a family of injective
endomorphisms of a free group, Contemp. Math, AMS 195.
[23] D. E. Dutkay and P. E. T. Jorgensen, Iterated function systems,
Ruelle operators and invariant projective measures,
arXiv:math.DS/0501077/v3, preprint (2005).
[24] R. Exel, A new look at the crossed-product of a algebra by a semigroup of endomorphisms,
preprint (2005).
[25] A. Gibbons and L. Novak, Hybrid Graph Theory and Network
Analysis, Cambridge Univ. Press, ISBN: 0-521-46117-0 (1999).
[26] A. Gill, Introduction to the Theory of Finite-State Machines,
MR0209083 (34\\\\\\\\#8891), McGraw-Hill Book Co., 1962
[27] R. Gliman, V. Shpilrain and A. G. Myasnikov (editors),
Computational and statistical group theory, Contemporary Math, AMS
298 (2001).
[28] D. Guido, T. Isola and M. L. Lapidus, A trace on fractal graphs
and the Ihara Zeta function, arXiv:math.OA/0608060v1, preprint 34
(2006).
[29] P. E. T. Jorgensen, L. M. Schmitt and R. F. Werner,
q-Canonical commutation relations and stability of the Cuntz
algebra, Pac. J. Math. 165(1) (1994), 131-151.
[30] P. E. T. Jorgensen, Use of operator algebras in the analysis of
measures from wavelets and iterated function systems, preprint (2005).
[31] P. E. T. Jorgensen and M. Song, Entropy encoding, Hilbert spaces,
and Kahunen-Loeve transforms, JMP 48(10) (2007).
[32] J. Kigami, R. S. Strichartz and K. C. Walker, Constructing a
Laplacian on the diamond fractal, Experiment. Math. 10(3) (2001),
437-448.
[33] D. W. Kribs and M. T. Jury, Ideal structure in free semigroupoid
algebras from directed graphs, preprint.
[34] I. V. Kucherenko, On the structurization of a class of reversible
cellular automata, Diskret. Mat. 19(3) (2007), 102-121.
[35] D. A. Lind, Entropies of automorphisms of a topological Markov
shift, Proc. AMS 99(3) (1987), 589-595.
[36] D. A. Lind and B. Marcus, An introduction to symbolic dynamics
and coding, Cambridge Univ. Press, 1995.
[37] C. W. Marshall, Applied Graph Theory, John Wiley & Sons, ISBN:
0-471-57300-0 (1971).
[38] P. D. Mitchener, Categories, groupoid actions, equivalent
KK-theory, and the Baum-Connes conjecture, arXiv:math.KT/0204291v1,
preprint (2005).
[39] A. G. Myasnikov and V. Shapilrain (editors), Group theory,
statistics and cryptography, Contemporary Math, AMS 360 (2003).
[40] P. Potgieter, Nonstandard analysis, fractal properties and
Brownian motion, arXiv:math.FA/0701649v1, preprint (2007).
[41] F. Radulescu, Random matrices, amalgamated free products and
subfactors of the algebra of a free group of noninteger index,
Invent. Math. 115 (1994), 347-389.
[42] I. Raeburn, Graph Algebras, CBMS no 3, AMS (2005).
[43] R. Scapellato and J. Lauri, Topics in Graph Automorphisms and
Reconstruction, London Math. Soc., Student Text 54, Cambridge Univ.
Press (2003).
[44] J. L. Schiff, Cellular Automata, Discrete View of the World,
Wiley-Interscience Series in Disc. Math. & Optimazation, John Wiley &
Sons Press, ISBN: 978-0-470-16879-0, (2008).
[45] T. Shirai, The spectrum of infinite regular line graphs, Trans.
AMS. 352(1) (2000), 115-132.
[46] B. Solel, You can see the arrows in a Quiver operator algebras,
preprint (2000).
[47] R. Speicher, Combinatorial theory of the free product with
amalgamation and operator-valued free probability theory, AMS Mem.
132(627) (1998).
[48] S. Thompson and I. Cho, Powers of Mutinomials in Commutative
Algebras, Undergrad. Research, Dept. Math., St. Ambrose Univ., 2008.
[49] S. Thompson, C. M. Mendoza, A. J. Kwiatkowski and I. Cho, Lattice
Paths Satisfying the Axis Property, Undergrad. Research, Dept. Math.,
St. Ambrose Univ., 2008.
[50] V. Vega, Finite Directed Graphs and Correspondences, Ph.D thesis, Univ. of Iowa,
2007.
[51] D. Voiculescu, K. Dykemma and A. Nica, Free random variables, CRM
Monograph Series 1 (1992).
[52] S. H. Weintraub, Representation theory of finite groups: Algebra
and arithmetic, Grad. Studies in Math., AMS 59 (2003).