References

INTEGRABLE THIRD ORDER EQUATIONS OF THE KDV TYPE


[1] P. A. Clarkson, A. S. Fokas and M. J. Ablowitz, Hodograph transformations of linearizable partial differential equations, SIAM J. Appl. Math. 49(4) (1989), 1188-1209.

[2] A. S. Fokas, On a class of physically important integrable equations, Physica D 87 (1995), 145-150.

[3] A. S. Fokas and Q. M. Liu, Asymptotic integrability of water waves, Phys. Rev. Lett. 77(12) (1996), 2347-2351.

[4] C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19(19) (1967), 1095-1097.

[5] C. Gilson and A. Pickering, Factorization and Painlevé analysis of a class of nonlinear third-order partial differential equations, J. Phys. A: Math. Gen. 28(10) (1995), 2871-2888.

[6] W. P. Hong, Dynamics of solitary waves in the higher order Korteweg-de Vries equation type (I), Z. Naturforsch. 60a (2005), 757-767.

[7] S. A. Khuri, Soliton and periodic solutions for higher order wave equations of KdV type (I), Chaos, Solitons & Fractals 26(1) (2005), 25-32.

[8] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21(5) (1968), 467-490.

[9] J. Li, W. Rui, Y. Long and B. He, Travelling wave solutions for higher-order wave equations of KdV type (III), Math. Biosci. Eng. 3(1) (2006), 125-135.

[10] J. Li, J. Wu and H. Zhu, Travelling waves for an integrable higher order KdV type wave equations, Int. J. Bif. Chaos 16(8) (2006), 2235-2260.

[11] J. Li, Dynamical understanding of loop soliton solution for several nonlinear wave equations, Sci. China Math. 50(6) (2007), 773-785.

[12] J. Li, Exact explicit peakon and periodic cusp wave solutions for several nonlinear wave equations, J. Dyn. Diff. Equat. 20(4) (2008), 909-922.

[13] Y. Long, J. Li, W. Rui and B. He, Travelling wave solutions for a second order wave equation of KdV type, Appl. Math. Mech. 28(11) (2007), 1455-1465.

[14] V. Marinakis and T. C. Bountis, On the Integrability of a New Class of Water Wave Equations, Proceedings of the Conference on Nonlinear Coherent Structures in Physics and Biology, Heriot-Watt University, Edinburgh, July 10-14, 1995, eds. D. B. Duncan and J. C. Eilbeck, published in
www.ma.hw.ac.uk/solitons/procs/

[15] V. Marinakis and T. C. Bountis, Special solutions of a new class of water wave equations, Comm. Appl. Anal. 4(3) (2000), 433-445.

[16] V. Marinakis, New solutions of a higher order wave equation of the KdV type, J. Nonlinear Math. Phys. 14(4) (2007), 519-525.

[17] V. Marinakis, New solitary wave solutions in higher-order wave equations of the Korteweg-de Vries type, Z. Naturforsch. 62a (2007), 227-230.

[18] V. Marinakis, Higher-order equations of the KdV type are integrable, Adv. Math. Phys. (2010), Article ID 329586.

[19] Z. Qiao and L. Liu, A new integrable equation with no smooth solitons, Chaos, Solitons & Fractals 41(2) (2009), 587-593.

[20] A. Ramani, B. Dorizzi and B. Grammaticos, Painlevé conjecture revisited, Phys. Rev. Lett. 49(21) (1982), 1539-1541.

[21] W. Rui, Y. Long and B. He, Some new travelling wave solutions with singular or nonsingular character for the higher order wave equation of KdV type (III), Nonlinear Anal. Theory Methods Appl. 70(11) (2009), 3816-3828.

[22] S. I. Svinolupov and V. V. Sokolov, Evolution equations with nontrivial conservation laws, Func. Anal. Appl. 16 (1982), 317-319.

[23] S. I. Svinolupov, V. V. Sokolov and R. I. Yamilov, On Bäcklund transformations for integrable equations, Soviet Math. Dokl. 28 (1983), 165-168.

[24] J. Weiss, M. Tabor and G. Carnevale, The Painlevé property for partial differential equations, J. Math. Phys. 24(3) (1983), 522-526.

[25] J. Weiss, The Painlevé property for partial differential equations, II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative, J. Math. Phys. 24(6) (1983), 1405-1413.