[1] P. A. Clarkson, A. S. Fokas and M. J. Ablowitz, Hodograph
transformations of linearizable partial differential equations, SIAM
J. Appl. Math. 49(4) (1989), 1188-1209.
[2] A. S. Fokas, On a class of physically important integrable
equations, Physica D 87 (1995), 145-150.
[3] A. S. Fokas and Q. M. Liu, Asymptotic integrability of water
waves, Phys. Rev. Lett. 77(12) (1996), 2347-2351.
[4] C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Method
for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19(19)
(1967), 1095-1097.
[5] C. Gilson and A. Pickering, Factorization and Painlevé analysis
of a class of nonlinear third-order partial differential equations, J.
Phys. A: Math. Gen. 28(10) (1995), 2871-2888.
[6] W. P. Hong, Dynamics of solitary waves in the higher order
Korteweg-de Vries equation type (I), Z. Naturforsch. 60a (2005),
757-767.
[7] S. A. Khuri, Soliton and periodic solutions for higher order wave
equations of KdV type (I), Chaos, Solitons & Fractals 26(1) (2005),
25-32.
[8] P. D. Lax, Integrals of nonlinear equations of evolution and
solitary waves, Comm. Pure Appl. Math. 21(5) (1968), 467-490.
[9] J. Li, W. Rui, Y. Long and B. He, Travelling wave solutions for
higher-order wave equations of KdV type (III), Math. Biosci. Eng. 3(1)
(2006), 125-135.
[10] J. Li, J. Wu and H. Zhu, Travelling waves for an integrable
higher order KdV type wave equations, Int. J. Bif. Chaos 16(8) (2006),
2235-2260.
[11] J. Li, Dynamical understanding of loop soliton solution for
several nonlinear wave equations, Sci. China Math. 50(6) (2007),
773-785.
[12] J. Li, Exact explicit peakon and periodic cusp wave solutions for
several nonlinear wave equations, J. Dyn. Diff. Equat. 20(4) (2008),
909-922.
[13] Y. Long, J. Li, W. Rui and B. He, Travelling wave solutions for a
second order wave equation of KdV type, Appl. Math. Mech. 28(11)
(2007), 1455-1465.
[14] V. Marinakis and T. C. Bountis, On the Integrability of a New
Class of Water Wave Equations, Proceedings of the Conference on
Nonlinear Coherent Structures in Physics and Biology, Heriot-Watt
University, Edinburgh, July 10-14, 1995, eds. D. B. Duncan and J. C.
Eilbeck, published in
www.ma.hw.ac.uk/solitons/procs/
[15] V. Marinakis and T. C. Bountis, Special solutions of a new class
of water wave equations, Comm. Appl. Anal. 4(3) (2000), 433-445.
[16] V. Marinakis, New solutions of a higher order wave equation of
the KdV type, J. Nonlinear Math. Phys. 14(4) (2007), 519-525.
[17] V. Marinakis, New solitary wave solutions in higher-order wave
equations of the Korteweg-de Vries type, Z. Naturforsch. 62a (2007),
227-230.
[18] V. Marinakis, Higher-order equations of the KdV type are
integrable, Adv. Math. Phys. (2010), Article ID 329586.
[19] Z. Qiao and L. Liu, A new integrable equation with no smooth
solitons, Chaos, Solitons & Fractals 41(2) (2009), 587-593.
[20] A. Ramani, B. Dorizzi and B. Grammaticos, Painlevé conjecture
revisited, Phys. Rev. Lett. 49(21) (1982), 1539-1541.
[21] W. Rui, Y. Long and B. He, Some new travelling wave solutions
with singular or nonsingular character for the higher order wave
equation of KdV type (III), Nonlinear Anal. Theory Methods Appl.
70(11) (2009), 3816-3828.
[22] S. I. Svinolupov and V. V. Sokolov, Evolution equations with
nontrivial conservation laws, Func. Anal. Appl. 16 (1982), 317-319.
[23] S. I. Svinolupov, V. V. Sokolov and R. I. Yamilov, On Bäcklund
transformations for integrable equations, Soviet Math. Dokl. 28
(1983), 165-168.
[24] J. Weiss, M. Tabor and G. Carnevale, The Painlevé property for
partial differential equations, J. Math. Phys. 24(3) (1983),
522-526.
[25] J. Weiss, The Painlevé property for partial differential
equations, II: Bäcklund transformation, Lax pairs, and the
Schwarzian derivative, J. Math. Phys. 24(6) (1983), 1405-1413.