References

A NOTE ON GLOBAL BEHAVIOR OF SOLUTIONS AND POSITIVE NONOSCILLATORY SOLUTION OF RATIONAL DIFFERENCE EQUATION


[1] R. P. Agarwal, Difference Equations and Inequalities, Second Ed., Dekker, New York, 1992, 2000.

[2] L. Berg, On the asymptotics of nonlinear difference equations, Z. Anal. Anwendungen 21 (2002), 1061-1074.

[3] L. Berg, Oscillating solutions of rational difference equations, Rostock. Math. Kolloq. 58 (2004), 31-35.

[4] V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic, Dordrecht, 1993.

[5] M. R. S. Kulenović, G. Ladas, L. F. Martins and I. W. Rodrignes, The dynamics of Facts and conjectures, Comput. Math. Appl. 45 (2003), 1087-1099.

[6] G. Ladas, Progress report on J. Differ. Equations Appl. 1 (1995), 211-215.

[7] X. Li, Qualitative properties for a fourth-order rational difference equation, J. Math. Anal. Appl. 311 (2005), 103-111.

[8] S. Stević, Asymptotic behaviour of a sequence defined by a recurrence formula, Austral. Math. Soc. Gaz. 28 (2001), 243-245.

[9] S. Stević, A note on the difference equation J. Differ. Equations Appl. 8 (2002), 641-647.

[10] S. Stević and K. Berenhaut, A note on positive nonoscillatory solutions of the difference equation J. Differ. Equations Appl. 12 (2006), 495-499.