References

AN ANALYSIS OF NEW FINITE ELEMENT SPACES FOR MAXWELL’S EQUATIONS


[1] A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations, Math. Comput. 68(226) (1999), 607-631.
DOI: https://doi.org/10.1090/S0025-5718-99-01013-3

[2] A. Bossavit, Computational Electromagnetism, Academic Press, San Diego, 1998.

[3] A. Bossavit, Mixed Finite Elements and the Complex of Whitney Forms, Academic Press, London, 1988.

[4] F. Brezzi, J. Douglas, R. Duran and M. Fortin, Mixed finite elements for second order elliptic problems in three variables, Numer. Math. 51(2) (1987), 237-250.
DOI: https://doi.org/10.1007/BF01396752

[5] J. H. Kim and Do Y. Kwak, New curl conforming finite elements on parallelepiped, Numer. Math. 131(3) (2015), 473-488.
DOI: https://doi.org/10.1007/s00211-015-0696-7

[6] J. H. Kim, New conforming finite elements on hexahedra, Int. J. Pure Appl. Math. 109(3) (2016), 609-618.
DOI: https://doi.org/10.12732/ijpam.v109i3.10

[7] J. C. Nedelec, Mixed finite elements in Numer. Math. 35(3) (1980), 315-341.
DOI: https://doi.org/10.1007/BF01396415

[8] Philippe G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing Company, New York, 1978.

[9] Peter Monk, Finite Element Methods for Maxwell’s Equations, Clarendon Press, Oxford, 2003.

[10] Peter Monk, Analysis of a finite element method for Maxwell’s equations, SIAM J. Numer. Anal. 29(3) (1992), 714-729.
DOI: https://doi.org/10.1137/0729045