References

DYNAMIC OPTIMAL CONTROL MODEL FOR DUAL-PAIR TREATMENT FUNCTIONS OF DUAL DELAYED HIV-PATHOGEN INFECTIONS


[1] J. M. Gregio, M. A. L. Caetano and T. Yoneyama, State estimation and optimal long period clinical treatment of HIV seropositive patients, Anais da Academic Brasileira de Ciencias 81(1) (2009), 3-12.
DOI: http://dx.doi.org/10.1590/S0001-37652009000100002

[2] B. E. Bassey and Lebedev K. Andreyevich, On analysis of parameter estimation model for the treatment of pathogen-induced HIV infectivity, Open Access Library Journal 3(4) (2016), 1-13.
DOI: http://dx.doi.org/10.4236/oalib.1102603

[3] R. V. Culshaw, S. Ruan and R. J. Spiteri, Optimal HIV treatment by maximizing immune response, Journal of Mathematical Biology 48(5) (2004), 545-562.
DOI: https://doi.org/10.1007/s00285-003-0245-3

[4] H. Zhu and X. Zou, Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay, Discrete and Continuous Dynamical Systems, Series B 12(2) (2009), 511-524.
DOI: https://doi.org/10.3934/dcdsb.2009.12.511

[5] D. Kirschner, Dynamics of co-infection with M. tuberculosis and HIV-1, Theoretical Population Biology 55(1) (1999), 94-109.
DOI: https://doi.org/10.1006/tpbi.1998.1382

[6] B. E. Bassey and K. A. Lebedev, On mathematical modeling of the effect of bi-therapeutic treatment of tuberculosis epidemic, Journal of Modern Mathematics and Statistics 9(1-4) (2015), 1-7.

[7] E. B. Bassey, R. A. Kimbir and K. A. Lebedev, On optimal control model for the treatment of dual HIV-parasitoid pathogen infection, Journal of Bioengineer & Biomedical Science 7(1) (2016), 1-7.
DOI: https://doi.org/10.4172/2155-9538.1000212

[8] R. A. Arnaout, M. A. Nowak and D. Wodarz, HIV-1 dynamics revisited: Biphasic decay by cytotoxic T lymphocyte killing?, Proc. Roy. Soc. Lond. B 267(1450) (2000), 1347-1354.
DOI: https://doi.org/10.1098/rspb.2000.1149

[9] K. Hattaf and N. Yousfi, Optimal control of a delayed HIV infection model with immune response using an efficient numerical method, ISRN Biomathematics 2012, pages 7, Article ID 215124.
DOI: http://dx.doi.org/10.5402/2012/215124

[10] M. A. Nowak and C. R. Bangham, Population dynamics of immune responses to persistent viruses, Science 272(5258) (1996), 74-79.
DOI: http://dx.doi.org/10.1126/science.272.5258.74

[11] J. E. Schmitz et al., Control of Viremia in simian immunodeficiency virus infection by lymphocytes, Science 283(5403) (1999), 857-860.
DOI: http://dx.doi.org/10.1126/science.283.5403.857

[12] X. Jin et al., Dramatic rise in plasma Viremia after cell depletion in simian immunodeficiency virus-infected macaques, Journal of Experimental Medicine 189(6) (1999), 991-998.
DOI: http://dx.doi.org/10.1084/jem.189.6.991

[13] E. S. Rosenberg, M. Altfeld, S. H. Poon, M. N. Phillips, B. M. Wilkes, R. L. Eldridge, G. K. Robbins, R. T. D’Aquila, P. J. Goulder and B. D. Walker, Immune control of HIV-1 after early treatment of acute infection, Nature 407 (2000), 523-526.
DOI: http://dx.doi.org/10.1038/35035103

[14] D. Wodarz, K. M. Page, R. A. Arnaout, A. R. Thomsen, J. D. Lifson and M. A. Nowak, A new theory of cytotoxic T-lymphocyte memory: Implications for HIV treatment, Philos. Trans. R. Soc. Lond. B: Biol. Sci. 355(1395) (2000), 329-343.
DOI: http://dx.doi.org/10.1098/rstb.2000.0570

[15] D. Wodarz, R. M. May and M. A. Nowak, The role of antigen-independent persistence of memory cytotoxic T lymphocytes, International Immunology 12(4) (2000), 467-477.
DOI: https://doi.org/10.1093/intimm/12.4.467

[16] A. R. Thomsen, J. Johansen, O. Marker and J. P. Christensen, Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice, Journal of Immunology 157(7) (1996), 3074-3080.

[17] A. R. Thomsen, A. Nansen, J. P. Christensen, S. O. Andreasen and O. Marker, CD40 Ligand is pivotal to efficient control of virus replication in mice infected with lymphocytic choriomeningitis virus, Journal of Immunology 161(9) (1998), 4583-4590.

[18] P. Borrow, A. Tishon, S. Lee, J. Xu, I. S. Grewal, M. B. Oldstone and R. A. Flavell, CD40L-Deficient mice show deficits in antiviral immunity and have an impaired memory CTL response, Journal of Experimental Medicine 183(5) (1996), 2129-2142.
DOI: http://dx.doi.org/10.1084/jem.183.5.2129

[19] P. Borrow, D. F. Tough, D. Eto, A. Tishon, I. S. Grewal, J. Sprent, R. A. Flavell and M. B. A. Oldstone, CD40 Ligand-mediated interactions are involved in the generation of memory cytotoxic T lymphocytes (CTL) but are not required for the maintenance of CTL memory following virus infection, Journal of Virology 72(9) (1998), 7440-7449.

[20] D. Wodarz and M. A. Nowak, Specific therapy regimes could lead to long-term immunological control of HIV, Proc. Natl. Acad. Sci. USA 96(25) (1999), 14464-14469.

[21] H. Zarei, A. V. Kamyad and S. Effati, Maximizing of asymptomatic stage of fast progressive HIV infected patient using embedding method, Intelligent Control and Automation 1(1) (2010), 48-58.
DOI: http://dx.doi.org/10.4236/ica.2010.11006

[22] A. Landi, A. Mazzoldi, C. Andreoni, M. Bianchi, A. Cavallini, M. Laurino, L. Ricotti, R. Iuliano, B. Matteoli and L. Ceccherini-Nelli, Modelling and control of HIV dynamics, Computer Methods and Programs in Biomedicine 89(2) (2008), 162-168.
DOI: https://doi.org/10.1016/j.cmpb.2007.08.003

[23] Bassey E. Bassey, Optimal control model for immune effectors response and multiple chemotherapy treatment (MCT) of dual delayed HIV pathogen infections, SDRP Journal of Infectious Diseases Treatment & Therapy 1(1) (2017), 1-18.

[24] B. E. Bassey, Quantum optimal control dynamics for delay intracellular and multiple chemotherapy treatment (MCT) of dual delayed HIV-pathogen infections, International Journal of Scientific and Innovative Mathematical Research 5(6) (2017), 1-19.
http://dx.doi.org/10.20431/2347-3142.0506001

[25] B. E. Bassey, Dynamic optimal control model for period multiple chemotherapy (PMC) treatment of dual HIV-pathogen infections, Journal of Analytical & Pharmaceutical Research 6(3) 00176 (2017), 1-22.
DOI: http://dx.doi.org/10.15406/japlr.2017.06.00176

[26] D. Wodarz and M. A. Nowak, Mathematical models of HIV pathogenesis and treatment, BioEssays 24(12) (2002), 1178-1187.
DOI: https://doi.org/10.1002/bies.10196

[27] J. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Science 99, Springer-Verlag, New York, 1993.

[28] A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Review 41(1) (1999), 3-44.
DOI: https://doi.org/10.1137/S0036144598335107

[29] S. Butler, D. Kirschner and S. Lenhart, Optimal control of chemotherapy affecting the infectivity of HIV, Editors: O. Arino, D. Axelrod and M. Kimmel, Advances in Mathematical Population Dynamics-Molecules Cells and Man (1997), 557-569.

[30] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer Verlag, New York, 1975.

[31] S. A. Perelson, E. D. Kirschner and R. De Boer, Dynamics of HIV infection of T cells, Mathematical Biosciences 114(1) (1993), 81-125.
DOI: https://doi.org/10.1016/0025-5564(93)90043-A

[32] D. L. Lukes, Differential Equations: Classical to Controlled, Vol. 162 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1982.

[33] H. R. Joshi, Optimal control of an HIV immunology model, Optimal Control Applications and Methods 23(4) (2002), 199-213.
DOI: https://doi.org/10.1002/oca.710

[34] K. R. Fister, S. Lenhart and J. S. McNally, Optimizing chemotherapy in an HIV model, Electronic Journal of Differential Equations 32 (1998), 1-12.

[35] X. Jin et al., An antigenic threshold for maintaining human Immunodeficiency virus type 1-specific cytotoxic T lymphocytes, Molecular Medicine 6(9) (2000), 803-809.