References

CONVERGENCE OF A SPECIAL SET OF TRIANGLES


[1] G. E. Martin, Geometric Constructions, Springer, New York (1998), 131-142.

[2] V. Oxman, M. Stupel and A. Sigler, Geometric constructions for geometric optics using a straightedge only, Journal for Geometry and Graphics 18(1) (2014), 73-79.

[3] M. Stupel, V. Oxman and A. Sigler, More on geometrical constructions of a tangent to a circle with a straightedge only, The Electronic Journal of Mathematics and Technology 8(1) (2014), 17-30.

[4] A. Sutton, Ruler and Compass: Practical Geometric Constructions, Walker & Company, 2009.

[5] P. Lidberg, Barycentric and Wachspress Coordinates in two Dimensions: Theory and Implementation for Shape Transformations, Uppsala Universitet, U.U.D.M. Project Report, February 2011.

[6] S. K. Stein, Archimedes: What did he do Besides Cry Eureka, The Mathematical Association of America, Page 15, Washington, 1999.

[7] D. A. Brannan, M. F. Esplen and J. J. Gray, Geometry, Cambridge University Press, page 75, Cambridge, 2004.

[8] D. N. V. Krishna, The fundamental property of Nagel point: A new proof, Journal of Mathematical Sciences & Mathematics Education 12(2) (2017), 21-28.
http://www.msme.us/2017-2-4.pdf

[9] R. M. Rustamov, Y. Lipman and T. Funkhouser, Interior distance using barycentric coordinates, Eurographics Symposium on Geometry Processing 28(5) (2009), 1279-1288.
DOI: https://doi.org/10.1111/j.1467-8659.2009.01505.x

[10] J. Vince, Mathematics for Computer Graphics, (4th Edition), Springer, London, Heidelberg, New York, Dordrecht, 2013. ISBN: 978-1-4471-6289-6.

[11] H. Eves, An Introduction to the History of Mathematics, Philadelphia: Saunders College Publishing, 1992.

[12] A. Kryftis, A Constructive Approach to Affine and Projective Planes, Ph.D. Thesis, University of Cambridge, 2015.

[13] B. D. S. McConnell, A Six-Point Ceva-Menelaus Theorem, 3 March 2014.
https://arxiv.org/pdf/1403.0478.pdf

[14] A. W. Goodman and G. Goodman, Generalizations of the theorems of Pappus, The American Mathematical Monthly 76(4) 1969), 355-366.