[1] G. Freiling and V. Yurko, Inverse Sturm-Liouville Problems and
their Applications, Nova Science Publishers, Inc., Huntington, New
York, 2008.
[2] V. Ambarzumjan, Uber eine frage der eigenwerttheorie, Zeitschrift
für Physik 53(9-10) (1929), 690-695.
DOI: https://doi.org/10.1007/BF01330827
[3] С. Б. Ðоркин,
Дифференциальнюе
ÑƒÑ€Ð°Ð²Ð½ÐµÐ½Ð¸Ñ Ð²Ñ‚Ð¾Ñ€Ð¾Ð³Ð¾
лорÑдка Ñ
запаздывающим
аргументом, Ðаука,
МоÑква, 1965.
[4] N. Levinson, The inverse Sturm-Liouville problem, Matematisk
Tidsskrift. B (1949), 25-30.
[5] O. H. Hald, Discontinuous inverse eigenvalue problems, Comm. Pure
Appl. Math. 37(5) (1984), 539-577.
DOI: https://doi.org/10.1002/cpa.3160370502
[6] R. Carlson, Inverse spectral theory for some singular
Sturm-Liouville problems, J. Differential Equations 106(1) (1993),
121-140.
DOI: https://doi.org/10.1006/jdeq.1993.1102
[7] M. Pikula, Asymptotic Eigenvalues and Regularized Traces of Linear
Differential Operators Doctoral Dissertation, Sarajevo, 1983.
[8] Б. М. Левитан and И.С.
СаргÑÑн,
Операторы
Штурма-Ð›Ð¸ÑƒÐ²Ð¸Ð»Ð»Ñ Ð¸
Дирака, МоÑква,
Ðаука, 1988.
[9] A. Bayramov, S. Ozturk Uslu and S. Kizilbudak Caliskan,
Computation of eigenvalues and eigenfunctions of a discontinuous
boundary value problem with retarded argument, Appl. Math. Comput.
191(2) (2007), 592-600.
DOI: https://doi.org/10.1016/j.amc.2007.02.118
[10] E. Bas and R. Ozarslan, Sturm-Liouville problem via coulomb type
in difference equations, Filomat 31(4) (2017), 989-998.
DOI: https://doi.org/10.2298/FIL1704989B