References

DIFFERENTIAL OPERATOR STURM-LIOUVILLE TYPE ON THE SEGMENT WITH VARIABLE DELAY


[1] G. Freiling and V. Yurko, Inverse Sturm-Liouville Problems and their Applications, Nova Science Publishers, Inc., Huntington, New York, 2008.

[2] V. Ambarzumjan, Uber eine frage der eigenwerttheorie, Zeitschrift für Physik 53(9-10) (1929), 690-695.
DOI: https://doi.org/10.1007/BF01330827

[3] С. Б. Норкин, Дифференциальнюе уравнения второго лорядка с запаздывающим аргументом, Наука, Москва, 1965.

[4] N. Levinson, The inverse Sturm-Liouville problem, Matematisk Tidsskrift. B (1949), 25-30.

[5] O. H. Hald, Discontinuous inverse eigenvalue problems, Comm. Pure Appl. Math. 37(5) (1984), 539-577.
DOI: https://doi.org/10.1002/cpa.3160370502

[6] R. Carlson, Inverse spectral theory for some singular Sturm-Liouville problems, J. Differential Equations 106(1) (1993), 121-140.
DOI: https://doi.org/10.1006/jdeq.1993.1102

[7] M. Pikula, Asymptotic Eigenvalues and Regularized Traces of Linear Differential Operators Doctoral Dissertation, Sarajevo, 1983.

[8] Б. М. Левитан and И.С. Саргсян, Операторы Штурма-Лиувилля и Дирака, Москва, Наука, 1988.

[9] A. Bayramov, S. Ozturk Uslu and S. Kizilbudak Caliskan, Computation of eigenvalues and eigenfunctions of a discontinuous boundary value problem with retarded argument, Appl. Math. Comput. 191(2) (2007), 592-600.
DOI: https://doi.org/10.1016/j.amc.2007.02.118

[10] E. Bas and R. Ozarslan, Sturm-Liouville problem via coulomb type in difference equations, Filomat 31(4) (2017), 989-998.
DOI: https://doi.org/10.2298/FIL1704989B