References

ANALYSIS OF EIGENVALUE BOUNDS FOR REAL SYMMETRIC INTERVAL MATRICES


[1] A. Deif, The interval eigenvalue problem, Z. Angew. Math. Mech. 71(1) (1991), 61-64.

[2] A. Deif and J. Rohn, On the invariance of the sign pattern of matrix eigenvectors under perturbation, Linear Alge. Appl. 196 (1994), 63-70.

[3] H. N. Leng and Z. Q. He, Computing eigenvalue bounds of structures with uncertain-but-non-random parameters by a method based on perturbation theory, Comm. Num. Meth. Engg. 23 (2007), 973-982.

[4] H. N. Leng, Z. Q. He and Q. Yuan, Computing bounds to real eigenvalues of real-interval matrices, Int. J. Numer. Meth. Engg. 74 (2008), 523-530.

[5] R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, New York, 1966.

[6] Z. P. Qiu, S. H. Chen and I. Elishakoff, Bounds of eigenvalues for structures with an interval description of uncertain-but-non-random parameters, Chaos Solitons Fractals 7 (1996), 425-434.

[7] Z. P. Qiu and X. J. Wang, Solution theorems for the standard eigenvalue problem of structures with uncertain-but-bounded parameters, J. Sound Vib. 282 (2005), 381-399.

[8] J. Rohn, Stability of interval matrices: The real eigenvalue case, IEEE Trans. Auto. Contr. 37(10) (1992), 1604-1605.

[9] J. Rohn and A. Deif, On the range of eigenvalues of an interval matrix, Computing 47(3-4) (1992), 373-377.

[10] J. Rohn, Interval matrices: Singularity and real eigenvalues, SIAM J. Matrix Anal. Appl. 14(1) (1993), 82-91.

[11] X. Z. Zhan, Extremal eigenvalues of real symmetric matrices with entries in an interval, SIAM J. Matrix Anal. Appl. 27(3) (2006), 851-860.

[12] X. D. Zhang, Matrix Analysis and Applications, Tsinghua University Press, Springer, 2005.