[1] A. Deif, The interval eigenvalue problem, Z. Angew. Math. Mech.
71(1) (1991), 61-64.
[2] A. Deif and J. Rohn, On the invariance of the sign pattern of
matrix eigenvectors under perturbation, Linear Alge. Appl. 196 (1994),
63-70.
[3] H. N. Leng and Z. Q. He, Computing eigenvalue bounds of structures
with uncertain-but-non-random parameters by a method based on
perturbation theory, Comm. Num. Meth. Engg. 23 (2007), 973-982.
[4] H. N. Leng, Z. Q. He and Q. Yuan, Computing bounds to real
eigenvalues of real-interval matrices, Int. J. Numer. Meth. Engg. 74
(2008), 523-530.
[5] R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs,
New York, 1966.
[6] Z. P. Qiu, S. H. Chen and I. Elishakoff, Bounds of eigenvalues for
structures with an interval description of uncertain-but-non-random
parameters, Chaos Solitons Fractals 7 (1996), 425-434.
[7] Z. P. Qiu and X. J. Wang, Solution theorems for the standard
eigenvalue problem of structures with uncertain-but-bounded
parameters, J. Sound Vib. 282 (2005), 381-399.
[8] J. Rohn, Stability of interval matrices: The real eigenvalue case,
IEEE Trans. Auto. Contr. 37(10) (1992), 1604-1605.
[9] J. Rohn and A. Deif, On the range of eigenvalues of an interval
matrix, Computing 47(3-4) (1992), 373-377.
[10] J. Rohn, Interval matrices: Singularity and real eigenvalues,
SIAM J. Matrix Anal. Appl. 14(1) (1993), 82-91.
[11] X. Z. Zhan, Extremal eigenvalues of real symmetric matrices with
entries in an interval, SIAM J. Matrix Anal. Appl. 27(3) (2006),
851-860.
[12] X. D. Zhang, Matrix Analysis and Applications, Tsinghua
University Press, Springer, 2005.