References

A XIN-AIYAMA TYPE THEOREM FOR SPACELIKE HYPERSURFACES IN


[1] R. Aiyama, On the Gauss map of complete spacelike hypersurfaces of constant mean curvature in Minkowski space, Tsukuba J. Math. 16 (1992), 353-361.

[2] A. L. Albujer, New examples of entire maximal graphs in Diff. Geom. and its Applications 26 (2008), 456-462.

[3] A. L. Albujer and L. J. Alías, Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces, J. Geom. Phys. 59 (2009), 620-631.

[4] L. J. Alías and M. Dajczer, Uniqueness of constant mean curvature surfaces properly immersed in a slab, Comment. Math. Helv. 81(3) (2006), 653-663.

[5] L. J. Alías and A. G. Colares, Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson-Walker spacetimes, Math. Proc. Cambridge Philos. Soc. 143 (2007), 703-729.

[6] E. Calabi, Examples of Bernstein problems for some nonlinear equations, Proc. Sympos. Pure Math. 15 (1970), 223-230.

[7] A. Caminha and H. F. de Lima, Complete vertical graphs with constant mean curvature in semi-Riemannian warped products, Bull. of the Belgian Math. Soc. 16 (2009), 91-105.

[8] X. Cheng and H. Rosenberg, Embedded positive constant r-mean curvature hypersurfaces in An. Acad. Bras. Cienc. 77(2) (2005), 183-199.

[9] S. Y. Cheng and S. T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski space, Ann. of Math. 104 (1976), 407-419.

[10] J. Marsdan and F. Tipler, Maximal hypersurfaces and foliations of constant mean curvature in general relativity, Bull. Am. Phys. Soc. 23 (1978), 84.

[11] H. Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sc. Math. 117 (1993), 217-239.

[12] S. Stumbles, Hypersurfaces of constant mean extrinsic curvature, Ann. Phys. 133 (1980), 28-56.

[13] Y. L. Xin, On the Gauss image of a spacelike hypersurface with constant mean curvature in Minkowski space, Comment. Math. Helv. 66 (1991), 590-598.