References

DELAY DEPENDENT STABILITY OF A CLASS OF BOUNDARY VALUE METHODS FOR DELAY DIFFERENTIAL EQUATION


[1] P. Amodio and F. Mazzia, A boundary value approach to the numerical solution of ODEs by multistep methods, J. Diff. Equ. Appl. 1 (1995), 353-367.

[2] P. Amodio and L. Brugnano, Parallel solution in time of ODEs: Some achievements and perspectives, Appl. Numer. Math. in press.

[3] C. T. H. Baker and N. J. Ford, Stability properties of a scheme for the approximate solution of a delay-integro-differential equations, Appl. Numer. Math. 9 (1992), 357-370.

[4] C. T. H. Baker and C. A. H. Paul, Computing stability regions-Runge-Kutta methods for delay differential equations, IMA J. Numer. Anal. 14 (1994), 347-362.

[5] A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Oxford University Press, Oxford, 2003.

[6] L. Brugnano, Essentially symplectic boundary value methods for linear Hamiltonian systems, J. Comput. Math. 15 (1997), 233-252.

[7] L. Brugnano and D. Triglante, Solving Differential Problem by Multistep Initial and Boundary Value Methods, Gordan and Breach, Amsterdam, 1998.

[8] L. Brugnano and D. Triglante, Boundary value methods: The third way between linear multistep and Runge-Kutta methods, Comput. Math. Appl. 36 (1998), 269-284.

[9] O. Diekmann, S. A. Van Gils, S. M. Verduin Lunel and H. O. Walther, Delay Equations: Functional-, Complex-, and Nonlinear Analysis, Springer-Verlag, Berlin, 1995.

[10] N. Guglielmi, On asymptotic stability properties for Runge-Kutta methods for delay differential equations, Numer. Math. 77 (1997), 467-485.

[11] N. Guglielmi, Delay dependent stability region of methods for delay differential equations, IMA J. Numer. Anal. 18 (1998), 339-418.

[12] N. Guglielmi and E. Hairer, Order stars and stability for delay differential equations, Numer. Math. 83 (1999), 371-383.

[13] N. Guglielmi and E. Hairer, Geometric proofs of numerical stability for equations, IMA J. Numer. Anal. 21 (2001), 439-450.

[14] N. Guglielmi, Asymptotic stability barriers for natural Runge-Kutta processes for delay equations, SIAM J. Numer. Anal. 39 (2001), 763-783.

[15] E. Hairer and G. Wanner, Solving Ordinary Differential Equations I, Springer, Berlin, 1991.

[16] C. M. Huang and S. Vandewalle, An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays, SIAM J. Sci. Comput. (2003).

[17] S. Maset, Asymptotic stability in the numerical solution of linear pure delay differential equations as abstract Cauchy problems, J. Comput. Appl. Math. 111 (1999), 163-172.

[18] S. Maset, Stability of Runge Kutta methods for linear delay differential equations, Numer. Math. 87 (2000), 355-371.

[19] S. F. Wu and S. G. Gan, Analytical and numerical stability of neutral delay-integro-diffierential equations and neutral delay partial differential equations, Comput. Math. Appl. 55 (2008), 2426-2443.