[1] P. Amodio and F. Mazzia, A boundary value approach to the
numerical solution of ODEs by multistep methods, J. Diff. Equ. Appl. 1
(1995), 353-367.
[2] P. Amodio and L. Brugnano, Parallel solution in time of ODEs: Some
achievements and perspectives, Appl. Numer. Math. in press.
[3] C. T. H. Baker and N. J. Ford, Stability properties of a scheme
for the approximate solution of a delay-integro-differential
equations, Appl. Numer. Math. 9 (1992), 357-370.
[4] C. T. H. Baker and C. A. H. Paul, Computing stability
regions-Runge-Kutta methods for delay differential equations, IMA J.
Numer. Anal. 14 (1994), 347-362.
[5] A. Bellen and M. Zennaro, Numerical Methods for Delay Differential
Equations, Oxford University Press, Oxford, 2003.
[6] L. Brugnano, Essentially symplectic boundary value methods for
linear Hamiltonian systems, J. Comput. Math. 15 (1997), 233-252.
[7] L. Brugnano and D. Triglante, Solving Differential Problem by
Multistep Initial and Boundary Value Methods, Gordan and Breach,
Amsterdam, 1998.
[8] L. Brugnano and D. Triglante, Boundary value methods: The third
way between linear multistep and Runge-Kutta methods, Comput. Math.
Appl. 36 (1998), 269-284.
[9] O. Diekmann, S. A. Van Gils, S. M. Verduin Lunel and H. O.
Walther, Delay Equations: Functional-, Complex-, and Nonlinear
Analysis, Springer-Verlag, Berlin, 1995.
[10] N. Guglielmi, On asymptotic stability properties for Runge-Kutta
methods for delay differential equations, Numer. Math. 77 (1997),
467-485.
[11] N. Guglielmi, Delay dependent stability region of methods for
delay differential equations, IMA J. Numer. Anal. 18 (1998),
339-418.
[12] N. Guglielmi and E. Hairer, Order stars and stability for delay
differential equations, Numer. Math. 83 (1999), 371-383.
[13] N. Guglielmi and E. Hairer, Geometric proofs of numerical
stability for equations, IMA J. Numer. Anal. 21 (2001), 439-450.
[14] N. Guglielmi, Asymptotic stability barriers for natural
Runge-Kutta processes for delay equations, SIAM J. Numer. Anal. 39
(2001), 763-783.
[15] E. Hairer and G. Wanner, Solving Ordinary Differential Equations
I, Springer, Berlin, 1991.
[16] C. M. Huang and S. Vandewalle, An analysis of delay-dependent
stability for ordinary and partial differential equations with fixed
and distributed delays, SIAM J. Sci. Comput. (2003).
[17] S. Maset, Asymptotic stability in the numerical solution of
linear pure delay differential equations as abstract Cauchy problems,
J. Comput. Appl. Math. 111 (1999), 163-172.
[18] S. Maset, Stability of Runge Kutta methods for linear delay
differential equations, Numer. Math. 87 (2000), 355-371.
[19] S. F. Wu and S. G. Gan, Analytical and numerical stability of
neutral delay-integro-diffierential equations and neutral delay
partial differential equations, Comput. Math. Appl. 55 (2008),
2426-2443.