References

ON EMBEDDING FUZZY NUMBERS INTO A BANACH SPACE


[1] S. Aytar and S. Pehlivan, Statistically monotonic and statistically bounded sequences of fuzzy numbers, Inf. Sci. 176 (2006), 734-744.

[2] P. Diamond and P. Kloeden, Metric Spaces of Fuzzy Sets: Theory and Applications, World Scientific, Singapore, 1994.

[3] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Pres, New York, 1980.

[4] R. Goetschel and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems 18 (1986), 31-43.

[5] J. S. Kwon, On statistical and p-Cesaro convergence of fuzzy numbers, Korean J. Comput. Appl. Math. 7(1) (2000), 195-203.

[6] M. Matloka, Sequences of fuzzy numbers, Busefal 28 (1986), 28-37.

[7] S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems 33 (1989), 123-126.

[8] F. Nuray, Lacunary statistical convergence of sequences of fuzzy numbers, Fuzzy Sets and Systems 99 (1998), 353-356.

[9] E. Savas, On strongly summable sequences of fuzzy numbers, lnform. Sci. 125 (2000), 181-186.

[10] N. Tuncer and F. B. Benli, Statistical limit points of the sequences of fuzzy numbers, Inform. Sci. 177 (2007), 3297-3304.

[11] C. Wu and G. Wang, Convergence of sequences of fuzzy numbers and fixed point theorems for increasing fuzzy mappings and application, Fuzzy Sets and Systems 130 (2002), 383-390.

[12] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.