References

ASYMPTOTIC BEHAVIOR OF RELAXED DIRICHLET PROBLEMS RELATED TO HOMOGENEOUS STRONGLY LOCAL FORMS


[1] M. Biroli and N. Tchou, Asymptotic behavior of relaxed Dirichlet problems involving a Dirichlet-Poincaré form, J. Anal. Appl. 16 (1997), 281-309.

[2] M. Biroli, C. Picard and N. Tchou, Homogenization of the p-Laplacian associated with the Heisenberg group, Mem. di Mat., Rend. Acc. Naz. Sc. Detta dei XL 22 (1998), 23-42.

[3] M. Biroli and N. Tchou, Relaxed Dirichlet problem for the subelliptic p-Laplacian, Ann. Mat. Pura Appl. (IV), CLXXIX (2001), 39-64.

[4] M. Biroli, C. Picard and N. Tchou, Asymptotic behavior of some nonlinear subelliptic Dirichlet problems, Mem. di Mat., Rend. Acc. Naz. Sc. Detta dei XL 26 (2002), 235-252.

[5] M. Biroli and P. Vernole, Strongly local nonlinear Dirichlet functionals and forms, Adv. Math. Sci. Appl. 15 (2005), 655-682.

[6] M. Biroli and P. Vernole, A priori estimates for p-Laplacian associated with nonlinear Dirichlet forms, Nonlinear Analysis 64 (2006), 51-68.

[7] L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Analysis 19 (1992), 581-597.

[8] F. Dal Fabbro and S. Marchi, convergence of strongly local Dirichlet functionals, Riv. Mat. Univ. Parma, (in print).

[9] G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators, Ann. Sc. Norm. Sup. Pisa 24 (1979), 239-290.

[10] J. Maly and U. Mosco, Remarks on measure-valued Lagrangians on homogeneous spaces, Ricerche Mat. 48 (Supp.) (1999), 217-231.