References

MINIMUM HELLINGER DISTANCE ESTIMATES OF LONG-RANGE DEPENDENCE GAUSSIAN PROCESSES


[1] J. Beran, Statistics for Long-Memory Process, Chapman & Hall, 1994.

[2] R. Beran, Minimum Hellinger distance estimates for parametric models, Ann. Statist. 5(3) (1977), 445-463.
DOI: http://dx.doi.org/10.1214/aos/1176343842

[3] S. Csörgő and J. Mielniczuk, Density estimation under long-range dependence, Ann. Statist. 23(3) (1995), 990-999.
DOI: http://dx.doi.org/10.1214/aos/1176324632

[4] L. De Giovanni and M. Naldi, Identification of long-range dependence in telecommunication networks, Statistica Applicata-Italian Journal of Applied Statistics 12(1) (2000), 31-58.

[5] C. W. J. Granger, The typical spectral shape of an economic variable, Econometrica 34(1) (1966), 150-161.
DOI: http://dx.doi.org/10.2307/1909859

[6] C. W. J. Granger and R. Joyeux, An introduction to long-memory time series models and fractional differencing, Journal of Time Series Analysis 1(1) (1980), 15-29.
DOI: http://dx.doi.org/10.1111/j.1467-9892.1980.tb00297.x

[7] H. C. Ho, A note on the exponential bounds for sequences of long-range dependence, Soochow Journal of Mathematics 20 (1994), 595-602.

[8] J. R. M. Hosking, Fractional differencing, Biometrika 68(1) (1981), 165-176.
DOI: https://doi.org/10.1093/biomet/68.1.165

[9] W. Leland, M. Taqqu, W. Willinger and D. Wilson, On the self-similar nature of Ethernet traffic, IEEE/ACM Transactions on Networking 2(1) (1994), 1-15.
DOI: https://doi.org/10.1109/90.282603

[10] A. N’dri and O. Hili, Estimation par la distance de Hellinger des processus gaussiens stationnaires fortement dependants, Comptes Rendus Mathématique 349(17-18) (2011), 991-994.
DOI: https://doi.org/10.1016/j.crma.2011.07.026

[11] A. N’dri and O. Hili, Hellinger distance estimation of strongly dependent multi-dimensional Gaussian processes, International Journal of Statistics and Probability 2(3) (2013), 70-84.
DOI: http://dx.doi.org/10.5539/ijsp.v2n3p70

[12] M. S. Taqqu, Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long-range dependence, Z. Wahrscheinlichkeitstheorie verw Gebiete 40(3) (1977), 203-238.
DOI: https://doi.org/10.1007/BF00736047

[13] G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian Processes, Chapman & Hall, 1994.

[14] W. Willinger, M. S. Taqqu, W. E. Leland and D. V. Wilson, Self-similarity in high-speed packet traffic: Analysis and modeling of Ethernet traffic measurements, Statistical Science 10(1) (1995), 67-85.