References

EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR A VARIATIONAL INEQUALITY OF KIRCHHOFF TYPE


[1] A. Friedman, Variational Principles and Free Boundary Value Problems, Wiley-Interscience, New York, 1983.

[2] J. Heinonen, T. Kilpelainen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Univ. Press, Oxford, 1993.

[3] S. Karamardian, Generalized complementarity problem, J. Opim. Theory Appl. 8(3) (1971), 161-168.
DOI: https://doi.org/10.1007/BF00932464

[4] D. Kinderlehrer and G. Stampacchia, Convex Programming and Variational Inequalities and their Applications, Academic Press, New York, 1980.

[5] O. Mancino and G. Stampacchia, Convex programming and variational inequalities, J. Optim. Theory Appl. 9(1) (1972), 3-23.
DOI: https://doi.org/10.1007/BF00932801

[6] J. F. Rodrigues, Obstacle problems in mathematical physics, In: Mathematics Studies, 134, Elsevier (1987).

[7] A. Szulkin, Minimax principles for lower semicountinuous functions and application to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Nonlinéaire 3(2) (1986), 77-109.

[8] G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, The University Series in Mathematics, 1987.

[9] M. Willem, Minimax Theorems, Birkhäuser, Berlin, 1996.

[10] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14(4) (1973), 349-381.
DOI: https://doi.org/10.1016/0022-1236(73)90051-7