[1] E. Abreu, M. Colombeau and E. Panov, Weak asymptotic methods for
scalar equations and systems, J. Math. Anal. Appl. 444(2) (2016),
1203-1232.
[2] V. Danilov and D. Mitrovic, Shock wave formation process for a
multidimensional scalar conservation law, Quart. Appl. Math. 69(4)
(2011), 613-634.
[3] V. G. Danilov and G. A. Omel’yanov, Weak asymptotics method
and the interaction of infinitely narrow delta-solitons, Nonlinear
Anal. Theory Methods Appl. 54 (2003), 773-799.
[4] V. G. Danilov, G. A. Omel’yanov and V. M. Shelkovich, Weak
asymptotics method and interaction of nonlinear waves in: M. V.
Karasev ed., Asymptotic methods for wave and quantum problems, AMS
Trans., Ser. 2, 208, AMS, Providence, RI, 2003, 33-164.
[5] M. G. Garcia Alvarado and G. A. Omel’yanov, Interaction of
solitary waves for the generalized KdV equation, Commun. Nonlinear
Sci. Numer. Simul. 17(8) (2012), 3204-3218.
[6] M. G. Garcia Alvarado and G. A. Omel’yanov, Interaction of
solitons and the effect of radiation for the generalized KdV equation,
Commun. Nonlinear Sci. Numer. Simul. 19(8) (2014), 2724-2733.
[7] H. Kalisch and D. Mitrovic, Singular solutions of a fully
nonlinear 2 × 2 system of conservation laws, Proc. Edinb. Math.
Soc. 55(3) (2012), 711-729.
[8] Kimiaki Konno and Yoshi H. Ichikawa, A modified Korteweg-de Vries
equation for ion acoustic waves, J. Phys. Soc. Jpn. 37 (1974),
1631-1636.
[9] G. A. Omel’yanov, Propagation and interaction of solitons
for nonintegrable equations, Russ. J. Math. Phys. 23(2) (2016),
225-243.
[10] G. A. Omel’yanov and M. A. Valdez-Grijalva, Asymptotics
for a -version of the KdV equation, Nonl. Phen. Compl.
Sys. 17(2) (2014), 106-115.
[11] O. Rahman, M. D. I. Bhuyan, M. M. Haider and J. Islam,
Dust-acoustic solitary waves in an unmagnetized dusty plasma with
arbitrarily charged dust fluid and trapped ion distribution, IJAA 4(1)
(2014); DOI: 10.4236/ijaa.2014.41011.
[12] H. Schamel, A modified Korteweg-de Vries equation for ion
acoustic waves due to resonant electrons, J. Plasma Phys. 9 (1973),
377-387.