[1] F. Z. Geng and M. G. Cui, Solving nonlinear multi-point boundary
value problems by combining homotopy perturbation and variational
iteration methods, Int. J. Nonlinear Sci. Num. Simul. 10 (2009),
597-600.
[2] J. H. He, Comput. Methods Appl. Mech. Eng. 167 (1998), 69.
[3] J. H. He, Variational iteration method-a kind of non-linear
analytical technique: Some examples, Int. J. Nonlinear Mech. 34(4)
(1999), 699-708.
[4] J. H. He, Homotopy perturbation technique, Comput. Methods Appl.
Mech. Eng. 178(3-4) (1999), 257-262.
[5] J. H. He, Comparison of homotopy perturbation method and homotopy
analysis method, Appl. Math. Comput. 156 (2) (2004), 527-539.
[6] J. H. He, Homotopy perturbation method for bifurcation of
nonlinear problems, Int. J. Nonlinear Sci. Num. Simul. 6(2) (2005),
207-208.
[7] J. H. He, Non-Perturbative Method for Strongly Nonlinear Problems,
Dissertation, de Verlag in Internet GmbH, Berlin, 2006.
[8] J. H. He, Some asymptotic methods for strongly nonlinear
equations, Int. J. Mod. Phys. B 20(1) (2006), 1141-1199.
[9] J. H. He, Int. J. Mod. Phys. B 20(18) (2006), 2561.
[10] J. H. He and X. H. Wu, Chaos Solitons Fractals 29 (2006), 108.
[11] J. H. He, Homotopy perturbation method for solving boundary value
problems, Physics Letters A 350(1-2) (2006), 87-88.
[12] J. H. He and X. H. Wu, Variational iteration method: New
development and applications, Computers and Mathematics with
Applications 54(7-8) (2007), 881-894.
[13] J. H. He, G. C. Wu and F. Austin, The variational iteration
method which should be followed, Nonlinear Science Letters A 1 (2010),
1-30.
[14] M. Matinfar, H. Hosseinzadeh and M. Ghanbari, Exact and numerical
solution of Kawahara equation by the variational iteration method,
Appl. Math. Sci. 2(43) (2008), 2119-2126.
[15] S. T. Mohyud-Din, Solving heat and wave-like equations using
He’s polynomials, Mathematical Problems in Engineering 2009
(2009), Doi:10.1155/2009/427516.