References

THE FIXED POINT METHOD FOR INTUITIONISTIC FUZZY STABILITY OF JENSEN-TYPE FUNCTIONAL EQUATION


[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.

[2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96.

[3] I. Cadariu and V. Radu, Fixed points and the stability of Jensen’s functional equation, J. Inequal. Pure Appl. Math. 4 (2003), 1-7.

[4] I. Cadariu and V. Radu, On the stability of the Cauchy functional equation: A fixed point approach, Iteration Theory (ECIT 02), vol.346 of Grazer Mathematische Berichte, pp.43-52, Karl-Franzens-Universitat Graz, Graz, Austria, 2004.

[5] G. Deschrijver and E. E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems 23 (2003), 227-235.

[6] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metic space, Bull. Amer. Math. Soc. 74 (1968), 305-309.

[7] Z. Gajda, On stability of additive mappings, Internat. J. Math. Sci. 14 (1991), 431-434.

[8] P. Gavruta, A generalization of the Hyers-ULam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.

[9] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.

[10] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

[11] Th. M. Rassia and P. Semrl, On the behaviour of mappings which do not satisfy Hyers-ULam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.

[12] Th. M. Rassia (ed.), Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003.

[13] S. Shakeri, Intuitionistic fuzzy stability of Jensen type mapping, J. Nonlinear Sci. Appl. 2 (2009), 105-112.

[14] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1960.