[1]	T. Aoki, On the stability of the linear transformation in Banach
spaces, J. Math.  Soc. Japan 2 (1950), 64-66. 
	
[2]	K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems
20 (1986), 87-96. 
	
[3]	I. Cadariu and V. Radu, Fixed points and the stability of
Jensen’s functional equation, J. Inequal. Pure Appl. Math. 4
(2003), 1-7.
	
[4]	I. Cadariu and V. Radu, On the stability of the Cauchy functional
equation: A fixed point approach, Iteration Theory (ECIT 02), vol.346
of Grazer Mathematische Berichte, pp.43-52, Karl-Franzens-Universitat
Graz, Graz, Austria, 2004. 
	
[5]	G. Deschrijver and E. E. Kerre, On the relationship between some
extensions of fuzzy set theory, Fuzzy Sets and Systems 23 (2003),
227-235. 
	
[6]	J. B. Diaz and B. Margolis, A fixed point theorem of the
alternative, for contractions on a generalized complete metic space,
Bull. Amer. Math. Soc. 74 (1968), 305-309. 
	
[7]	Z. Gajda, On stability of additive mappings, Internat. J. Math.
Sci. 14 (1991), 431-434. 
	
[8]	P. Gavruta, A generalization of the Hyers-ULam-Rassias stability
of approximately additive mappings, J. Math. Anal. Appl. 184 (1994),
431-436. 
	
[9]	D. H. Hyers, On the stability of the linear functional equation,
Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
	
[10]	Th. M. Rassias, On the stability of the linear mapping in Banach
spaces, Proc.  Amer. Math. Soc. 72 (1978), 297-300.
	
[11]	Th. M. Rassia and P. Semrl, On the behaviour of mappings which do
not satisfy Hyers-ULam stability, Proc. Amer. Math. Soc. 114 (1992),
989-993.
	
[12]	Th. M. Rassia (ed.), Functional Equations, Inequalities and
Applications, Kluwer Academic Publishers, Dordrecht, Boston and
London, 2003.
	
[13]	S. Shakeri, Intuitionistic fuzzy stability of Jensen type
mapping, J. Nonlinear Sci. Appl. 2 (2009), 105-112.
	
[14]	S. M. Ulam, A Collection of Mathematical Problems, Interscience
Publishers, New York, 1960.