References

ANALYTIC SOLUTIONS OF THE DIMENSIONAL NONLINEAR EVOLUTION EQUATIONS USING THE EXTENDED TANH METHOD


[1] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, London, 1991.

[2] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer-Verlag, Berlin, 1989.

[3] E. G. Fan, Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics, Chaos Solitons and Fractals 16 (2003), 819-839.

[4] C. H. Gu, H. S. Hu and Z. X. Zhou, Darboux Transformations in Soliton Theory and its Geometric Applications, Shanghai Sci. Tech. Publ., Shanghai, 1999.

[5] R. Hirota and J. Satsuma, Soliton solutions of a coupled KdV equation, Phys. Lett. A 85 (1981), 407-408.

[6] J. B. Li and Z. Liu, Travelling wave solutions for a class of nonlinear dispersive equations, Chin. Ann. Math. 23B (2002), 397-418.

[7] W. Malfliet, Solitary wave solutions of nonlinear wave equations, Amer. J. Phys. 60(7) (1992), 650-654.

[8] W. Malfliet and W. Hereman, The tanh method: II Perturbation technique for conservative systems, Phys. Scr. 54 (1996), 569-575.

[9] V. B. Matveev and M. A. Salle, Darboux Transformation and Solitons, Springer-Verlag, Berlin, 1991.

[10] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1993.

[11] S. Tang and W. Huang, Bifurcations of travelling wave solutions for the generalized double sinh-Gordon equation, Appl. Math. Comput. 189 (2007), 1774-1781.

[12] F. Tascana and A. Bekir, Analytic solutions of the dimensional nonlinear evolution equations using the sine-cosine method, Appl. Math. Comput. (2009), in press.

[13] L. Tian and J. Yin, New compacton solutions and solitary wave solutions of fully nonlinear generalized Camassa-Holm equations, Chaos Solitons and Fractals 20 (2004), 289-299.

[14] M. L. Wang, Exact solutions for a compound KdV-Burgers equation, Phys. Lett. A 213 (1996), 279-287.

[15] A. M. Wazwaz, Solutions of compact and noncompact structures for nonlinear Klein-Gordon-type equation, Appl. Math. Comput. 134 (2003), 487-500.

[16] A. M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput. Model. 40 (2004), 499-508.

[17] A. M. Wazwaz, A reliable treatment of the physical structure for the nonlinear equation K(m, n), Appl. Math. Comput. 163 (2005), 1081-1095.

[18] A. M. Wazwaz, A class of nonlinear fourth order variant of a generalized Camassa-Holm equation with compact and noncompact solutions, Appl. Math. Compt. 165 (2005), 485-501.

[19] A. M. Wazwaz, Solitons and periodic solutions for the fifth-order KdV equation, Appl. Math. Lett. 19 (2006), 1162-1167.

[20] Z. Y. Yan, New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations, Phys. Lett. A 292 (2001), 100-106.

[21] S. Zhang, New exact solutions of the KdV-Burgers-Kuramoto equation, Phys. Lett. A 358 (2006), 414-420.

[22] Y. Zheng, S. Lai and Peakons, Solitary patterns and periodic solutions for generalized Camassa-Holm equations, Phys. Lett. A 372 (2008), 4141-4143.