References

ON INVERTIBILITY OF MULTIPLICATIVE COMBINATION OF TWO IDEMPOTENTS


[1] J. K. Baksalary, O. M. Baksalary and T. Szulc, A property of orthogonal projectors, Linear Algebra Appl. 354 (2002), 35-39. Ninth special issue on linear algebra and statistics.

[2] J. K. Baksalary and O. M. Baksalary, Nonsingularity of linear combinations of idempotent matrices, Linear Algebra Appl. 388 (2004), 25-29.

[3] O. M. Baksalary, Idempotency of linear combinations of three idempotent matrices, two of which are disjoint, Linear Algebra Appl. 388 (2004), 67-78.

[4] Man-Duen Choi and Pei Yuan Wu, Convex combinations of projections, Linear Algebra Appl. 136 (1990), 25-42.

[5] G. Corach, A. Maestripieri and D. Stojanoff, Generalized Schur complements and oblique projections, Linear Algebra Appl. 341 (2002), 259-272.

[6] J. Gross and G. Trenkler, Nonsingularity of the difference of two oblique projectors, SIAM Journal on Matrix Analysis Appl. 21 (1999), 390-395.

[7] J. J. Koliha, V. Rakoevi and I. Strakraba, The difference and sum of projectors, Linear Algebra Appl. 388 (2004), 279-288.

[8] S. Kruglyak, V. Rabanovich and Y. Samolenko, Decomposition of a scalar matrix into a sum of orthogonal projections, Linear Algebra Appl. 370 (2003), 217-225.

[9] E. Spiegel, Sums of projections, Linear Algebra Appl. 187 (1993), 239-249.

[10] Ilya M. Spitkovsky, On polynomials in two projections, Electronic Journal of Linear Algebra 15 (2006), 154-158.

[11] J. Ben Tez and N. Thome, Idempotency of linear combinations of an idempotent matrix and a t-potent matrix that commute, Linear Algebra Appl. 403 (2005), 414-418.