[1] J. K. Baksalary, O. M. Baksalary and T. Szulc, A property of
orthogonal projectors, Linear Algebra Appl. 354 (2002), 35-39. Ninth
special issue on linear algebra and statistics.
[2] J. K. Baksalary and O. M. Baksalary, Nonsingularity of linear
combinations of idempotent matrices, Linear Algebra Appl. 388 (2004),
25-29.
[3] O. M. Baksalary, Idempotency of linear combinations of three
idempotent matrices, two of which are disjoint, Linear Algebra Appl.
388 (2004), 67-78.
[4] Man-Duen Choi and Pei Yuan Wu, Convex combinations of projections,
Linear Algebra Appl. 136 (1990), 25-42.
[5] G. Corach, A. Maestripieri and D. Stojanoff, Generalized Schur
complements and oblique projections, Linear Algebra Appl. 341 (2002),
259-272.
[6] J. Gross and G. Trenkler, Nonsingularity of the difference of two
oblique projectors, SIAM Journal on Matrix Analysis Appl. 21 (1999),
390-395.
[7] J. J. Koliha, V. Rakoevi and I. Strakraba, The difference and sum
of projectors, Linear Algebra Appl. 388 (2004), 279-288.
[8] S. Kruglyak, V. Rabanovich and Y. Samolenko, Decomposition of a
scalar matrix into a sum of orthogonal projections, Linear Algebra
Appl. 370 (2003), 217-225.
[9] E. Spiegel, Sums of projections, Linear Algebra Appl. 187 (1993),
239-249.
[10] Ilya M. Spitkovsky, On polynomials in two projections, Electronic
Journal of Linear Algebra 15 (2006), 154-158.
[11] J. Ben Tez and N. Thome, Idempotency of linear combinations of an
idempotent matrix and a t-potent matrix that commute, Linear Algebra
Appl. 403 (2005), 414-418.