References

HYERS-ULAM STABILITY OF THE QUADRATIC AND JENSEN FUNCTIONAL EQUATIONS ON UNBOUNDED DOMAINS


[1] B. Bouikhalene, E. Elqorachi and Th. M. Rassias, On the generalized Hyers-Ulam stability of the quadratic functional equation with a general involution, Nonlinear Funct. Anal. Appl. 12(2) (2007), 247-262.

[2] A. Charifi, B. Bouikhalene and E. Elqorachi, Hyers-Ulam-Rassias stability of a generalized Pexider functional equation, Banach J. Math. Anal. 1(2) (2007), 176-185.

[3] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.

[4] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.

[5] G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 143-190.

[6] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434.

[7] P. GÇŽvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.

[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.

[9] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153.

[10] D. H. Hyers, G. I. Isac and Th. M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc. 126 (1998), 425-430.

[11] D. H. Hyers, G. I. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.

[12] S.-M. Jung, Hyers-Ulam-Rassias stability of Jensens equation and its applications, Proc. Amer. Math. Soc. 126(11) (1998), 3137-3143.

[13] S.-M. Jung, On the Hyers-Ulam stability of the functional equation that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137.

[14] S.-M. Jung, Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg 70 (2000), 175-190.

[15] S.-M. Jung and B. Kim, Local stability of the additive functional equation and its applications, IJMMS (2003), 15-26.

[16] G. H. Kim and S. H. Lee, Stability of the d’Alembert type functional equations, Nonlinear Funct. Anal. Appl. 9 (2004), 593-604.

[17] Y. Manar, E. Elqorachi and Th. M. Rassias, Hyers-Ulam stability of the Jensen functional equation in quasi-Banach spaces, Nonlinear Funct. Anal. Appl. (to appear).

[18] Y. Manar, E. Elqorachi and Th. M. Rassias, On the Hyers-Ulam stability of the quadratic and Jensen functional equations on a restricted domain, Nonlinear Funct. Anal. Appl. (to appear).

[19] Th. M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

[20] Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991), 106-113.

[21] Th. M. Rassias and P. Å emrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.

[22] Th. M. Rassias and P. Å emrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.

[23] Th. M. Rassias and J. Tabor, Stability of Mappings of Hyers-Ulam Type, Hadronic Press, Inc., Palm Harbor, Florida, 1994.

[24] Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378.

[25] Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.

[26] F. Skof, Local properties and approximations of operators, Rend. Sem. Math. Fis. Milano. 53 (1983), 113-129.

[27] F. Skof, Sull’approssimazione delle applicazioni localmente additive, Atti. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 117 (1983), 377-389.

[28] F. Skof, Approssimazione di funzioni quadratic su dominio restretto, Atti. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 118 (1984), 58-70.

[29] H. Stetkaer, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), 144-172.

[30] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1961, Problems in Modern Mathematics, Wiley, New York, 1964.