[1] B. Bouikhalene, E. Elqorachi and Th. M. Rassias, On the
generalized Hyers-Ulam stability of the quadratic functional equation
with a general involution, Nonlinear Funct. Anal. Appl. 12(2) (2007),
247-262.
[2] A. Charifi, B. Bouikhalene and E. Elqorachi, Hyers-Ulam-Rassias
stability of a generalized Pexider functional equation, Banach J.
Math. Anal. 1(2) (2007), 176-185.
[3] P. W. Cholewa, Remarks on the stability of functional equations,
Aequationes Math. 27 (1984), 76-86.
[4] S. Czerwik, On the stability of the quadratic mapping in normed
spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[5] G. L. Forti, Hyers-Ulam stability of functional equations in
several variables, Aequationes Math. 50 (1995), 143-190.
[6] Z. Gajda, On stability of additive mappings, Internat. J. Math.
Math. Sci. 14 (1991), 431-434.
[7] P. GÇŽvruta, A generalization of the Hyers-Ulam-Rassias
stability of approximately additive mappings, J. Math. Anal. Appl. 184
(1994), 431-436.
[8] D. H. Hyers, On the stability of the linear functional equation,
Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[9] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms,
Aequationes Math. 44 (1992), 125-153.
[10] D. H. Hyers, G. I. Isac and Th. M. Rassias, On the asymptoticity
aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc. 126
(1998), 425-430.
[11] D. H. Hyers, G. I. Isac and Th. M. Rassias, Stability of
Functional Equations in Several Variables, Birkhäuser, Basel,
1998.
[12] S.-M. Jung, Hyers-Ulam-Rassias stability of Jensens equation and
its applications, Proc. Amer. Math. Soc. 126(11) (1998), 3137-3143.
[13] S.-M. Jung, On the Hyers-Ulam stability of the functional
equation that have the quadratic property, J. Math. Anal. Appl. 222
(1998), 126-137.
[14] S.-M. Jung, Stability of the quadratic equation of Pexider type,
Abh. Math. Sem. Univ. Hamburg 70 (2000), 175-190.
[15] S.-M. Jung and B. Kim, Local stability of the additive functional
equation and its applications, IJMMS (2003), 15-26.
[16] G. H. Kim and S. H. Lee, Stability of the d’Alembert type
functional equations, Nonlinear Funct. Anal. Appl. 9 (2004),
593-604.
[17] Y. Manar, E. Elqorachi and Th. M. Rassias, Hyers-Ulam stability
of the Jensen functional equation in quasi-Banach spaces, Nonlinear
Funct. Anal. Appl. (to appear).
[18] Y. Manar, E. Elqorachi and Th. M. Rassias, On the Hyers-Ulam
stability of the quadratic and Jensen functional equations on a
restricted domain, Nonlinear Funct. Anal. Appl. (to appear).
[19] Th. M. Rassias, On the stability of linear mapping in Banach
spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[20] Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal.
Appl. 158 (1991), 106-113.
[21] Th. M. Rassias and P. Å emrl, On the behavior of
mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math.
Soc. 114 (1992), 989-993.
[22] Th. M. Rassias and P. Å emrl, On the Hyers-Ulam
stability of linear mappings, J. Math. Anal. Appl. 173 (1993),
325-338.
[23] Th. M. Rassias and J. Tabor, Stability of Mappings of Hyers-Ulam
Type, Hadronic Press, Inc., Palm Harbor, Florida, 1994.
[24] Th. M. Rassias, The problem of S. M. Ulam for approximately
multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378.
[25] Th. M. Rassias, Functional Equations, Inequalities and
Applications, Kluwer Academic Publishers, Dordrecht, Boston, London,
2003.
[26] F. Skof, Local properties and approximations of operators, Rend.
Sem. Math. Fis. Milano. 53 (1983), 113-129.
[27] F. Skof, Sull’approssimazione delle applicazioni
localmente additive, Atti. Accad. Sci. Torino Cl. Sci.
Fis. Mat. Natur. 117 (1983), 377-389.
[28] F. Skof, Approssimazione di funzioni quadratic su dominio restretto, Atti. Accad.
Sci. Torino Cl. Sci. Fis. Mat. Natur. 118 (1984), 58-70.
[29] H. Stetkaer, Functional equations on abelian groups with
involution, Aequationes Math. 54 (1997), 144-172.
[30] S. M. Ulam, A Collection of Mathematical Problems, Interscience
Publ., New York, 1961, Problems in Modern Mathematics, Wiley, New
York, 1964.