[1] S. Abbasbandy, Application of He’s homotopy perturbation
method to functional integral equations, Chaos Solitons and Fractals
31 (2007), 1243-1247.
[2] E. Baboolian and A. S. Shamloo, Numerical solution of Volterra
integral integro-differential equations of convolution type by using
operational matrices of piecewise constant orthogonal functions, J.
Comput. Appl. Math. 214 (2008), 495-508.
[3] J. Biazar and H. Ghazvini, Exact solution for nonlinear
Schrödinger equation by He’s homotopy perturbation method,
Phys. Lett. A 366 (2007), 79-84.
[4] M. El-shahed, Application of He’s homotopy perturbation
method to Volterra’s integro-differential equation, Int. J.
Nonlinear Sci. Numer. Simul. 6 (2005), 163-168.
[5] D. D. Ganji, G. A. Afrouzi, H. Hosseinzadeh and R. A. Talarposhti,
Application of homotopy perturbation method to the second kind of
nonlinear integral equations, Phys. Lett. A 371 (2007), 20-25.
[6] A. Ghorbani and J. Saberi-Nadjafi, Exact solutions for nonlinear
integral equations by a modified homotopy perturbation method, Comput.
Math. Appl. 56 (2008), 1032-1039.
[7] A. Ghorbani, Beyond Adomian polynomials: He polynomials, Chaos
Solitons and Fractals 39 (2009), 1486-1492.
[8] A. Golbabai and B. Keramati, Modified homotopy perturbation method
for solving Fredholm integral equations, Chaos Solitons and Fractals
37 (2008), 1528-1537.
[9] J. H. He, A coupling method of homotopy technique and perturbation
technique for nonlinear problems, Int. Nonlinear Mech. 35 (2000),
1221-1230.
[10] J. H. He, The homotopy perturbation method for nonlinear
oscillators with discontinuities, Appl. Math. Comput. 151 (2004),
287-289.
[11] J. H. He, Application of homotopy perturbation method to
nonlinear wave equations, Chaos Solitons and Fractals 26 (2005),
695-700.
[12] R. K. Pandey, O. P. Singh and V. K. Singh, Efficient algorithms
to solve singular integral equation of Abel type, Comput. Math. Appl.
57 (2009), 664-676.