References

APPROXIMATION OF DISCRETE AND PENALIZED LEAST SQUARES SPLINES OVER SPHERICAL TRIANGULATIONS


[1] V. Baramidze, M. J. Lai and C. K. Shum, Spherical splines for data interpolation and fitting, SIAM J. Sci. Comput. 28 (2006), 241-259.

[2] P. Alfeld, M. Neamtu and L. L. Schumaker, Fitting scattered data on sphere-like surfaces using spherical splines, J. Comp. Appl. Math 73 (1996), 5-43.

[3] P. Alfeld, M. Neamtu and L. L. Schumaker, Bernstein-Bezier polynomials on spheres and spheres and sphere-like surface, Comput. Aided Geom. Design 13 (1996), 333-349.

[4] P. Alfeld, M. Neamtu and L. L. Schumaker, Dimension and local bases of homogeneous spline spaces, SIAM J. Math. Anal. 27 (1996), 1482-1501.

[5] V. Baramidze and M. J. Lai, Error bounds for minimal energy interpolatory spherical splines, In: C. K. Chui, M. Neamtu, L. L. Schumaker (eds.), Approximation Theory XI, Nashboro Press, Brentwood, (2005), 25-50.

[6] M. J. Lai and L. L. Schumaker, Splines Functions over Triangulations, Cambridge University Press, Cambridge, 2007.

[7] M. von Golitschek and L. L. Schumaker, Bounds on projections onto bivariate polynomial spline with stable local bases, Constr. Approx. 18 (2002), 241-254.

[8] M. Neamtu and L. L. Schumaker, On the approximation order of splines on spherical triangulations, Adv. Comput. Math. 21 (2004), 3-20.

[9] V. Baramidze and M. J. Lai, Convergence of discrete and penalized least squares spherical splines, In: Journal of Approximation Theory. 163 (2011), 1091-1106.

[10] V. Baramidze, M. J. Lai, C. K. Shum and P. Wenston, Triangulated spherical splines for geopotential reconstruction, J. Geod. 83(8) (2008), 695-708.

[11] M. von Golitschek and L. L. Schumaker, Penalized least squares fitting, In: Algorithms for Approximation II, Chapman and Hall, London, 1990.

[12] M. von Golitschek and L. Schumaker, Penalized least squares fitting, Serdica 18 (2002), 1001-1020.

[13] H. Wendland and C. Rieger, Approximate interpolation with applications to selecting smoothing parameters, Numer. Math. 101 (4) (2005), 729-748.

[14] R. J. Renka, Multivariate interpolation of largesets of scattered data, J. ACM Trans. Math. Soft-Ware (TOMS) 14 (1988), 139-148.

[15] V. Baramidze, Spherical splines for scattered data fitting Ph.D. Disseratation Department of Mathematics the University of Georiga, Athens, GA, 2005.

[16] R. Adams, Sobolev spaces, Academic Press, New York, 1975.

[17] G. Fasshauer and L. L. Schumaker, Scattered data fitting on the sphere in Mathematical Methods for Curves and Surfaces II, M. Daehlen, T. Lyche, L. Schumaker, Vanderbilt University Press, (1998), 117-166.

[18] G. Wahba, Splines for Observation ata, SIAM Publication, Philadelphia, 1990.

[19] C. P. An, X. J. Chen, I. H. Sloan and R. S. Womersley, Regularized least squares approximation on the sphere using spherical designs, J. SIAM Journal on Numerical Analysis 50 (2012), 1513-1534.