[1] V. Baramidze, M. J. Lai and C. K. Shum, Spherical splines for data
interpolation and fitting, SIAM J. Sci. Comput. 28 (2006), 241-259.
[2] P. Alfeld, M. Neamtu and L. L. Schumaker, Fitting scattered data
on sphere-like surfaces using spherical splines, J. Comp. Appl. Math
73 (1996), 5-43.
[3] P. Alfeld, M. Neamtu and L. L. Schumaker, Bernstein-Bezier
polynomials on spheres and spheres and sphere-like surface, Comput.
Aided Geom. Design 13 (1996), 333-349.
[4] P. Alfeld, M. Neamtu and L. L. Schumaker, Dimension and local
bases of homogeneous spline spaces, SIAM J. Math. Anal. 27 (1996),
1482-1501.
[5] V. Baramidze and M. J. Lai, Error bounds for minimal energy
interpolatory spherical splines, In: C. K. Chui, M. Neamtu, L. L.
Schumaker (eds.), Approximation Theory XI, Nashboro Press, Brentwood,
(2005), 25-50.
[6] M. J. Lai and L. L. Schumaker, Splines Functions over
Triangulations, Cambridge University Press, Cambridge, 2007.
[7] M. von Golitschek and L. L. Schumaker, Bounds on projections onto
bivariate polynomial spline with stable local bases, Constr. Approx.
18 (2002), 241-254.
[8] M. Neamtu and L. L. Schumaker, On the approximation order of
splines on spherical triangulations, Adv. Comput. Math. 21 (2004),
3-20.
[9] V. Baramidze and M. J. Lai, Convergence of discrete and penalized
least squares spherical splines, In: Journal of Approximation Theory.
163 (2011), 1091-1106.
[10] V. Baramidze, M. J. Lai, C. K. Shum and P. Wenston, Triangulated
spherical splines for geopotential reconstruction, J. Geod. 83(8)
(2008), 695-708.
[11] M. von Golitschek and L. L. Schumaker, Penalized least squares
fitting, In: Algorithms for Approximation II, Chapman and Hall,
London, 1990.
[12] M. von Golitschek and L. Schumaker, Penalized least squares
fitting, Serdica 18 (2002), 1001-1020.
[13] H. Wendland and C. Rieger, Approximate interpolation with
applications to selecting smoothing parameters, Numer. Math. 101 (4)
(2005), 729-748.
[14] R. J. Renka, Multivariate interpolation of largesets of scattered
data, J. ACM Trans. Math. Soft-Ware (TOMS) 14 (1988), 139-148.
[15] V. Baramidze, Spherical splines for scattered data fitting Ph.D.
Disseratation Department of Mathematics the University of Georiga,
Athens, GA, 2005.
[16] R. Adams, Sobolev spaces, Academic Press, New York, 1975.
[17] G. Fasshauer and L. L. Schumaker, Scattered data fitting on the
sphere in Mathematical Methods for Curves and Surfaces II, M. Daehlen,
T. Lyche, L. Schumaker, Vanderbilt University Press, (1998),
117-166.
[18] G. Wahba, Splines for Observation ata, SIAM Publication,
Philadelphia, 1990.
[19] C. P. An, X. J. Chen, I. H. Sloan and R. S. Womersley,
Regularized least squares approximation on the sphere using spherical
designs, J. SIAM Journal on Numerical Analysis 50 (2012), 1513-1534.