[1] K. Abdelwahab and R. B. Guenther, Introduction to Numerical
Methods a MATLAB Approach, Chapman and Hall/CRC, New York, 2002.
[2] S. Barnett and R. G. Cameron, Introduction to Mathematical Control
Theory, Clarendon Press, Oxford, 1985.
[3] Q. P. Ha, H. Trinh and V. N. Phat, Design of reduced-order
observers for global state feedback control of multi-agent systems,
Int. J. Aut. Control 1(2-3) (2007), 165-181.
[4] J. Lu and G. Chen, A new chaotic attractor coined, Int. J. Bifurc.
Chaos 12 (2002), 659-661.
[5] P. T. Nam and V. N. Phat, Robust exponential stability and
stabilization of linear uncertain polytropic time-delay systems, J.
Control Theory Appl. 6 (2008), 163-170.
[6] P. Niamsup and V. N. Phat, Stability of linear time-varying delay
systems and applications to control problems, J. Comput. Appl. Math.
194 (2006), 343-356 (SCI).
[7] P. Niamsup, K. Mukdasai and V. N. Phat, Linear uncertain
non-autonomous time-delay systems: Stability and stabilizability via
Riccati equations, Elect. J. Dif. Equations 26 (2008), 1-10.
[8] P. Niamsup, K. Mukdasai and V. N. Phat, Improved exponential
stability for time-varying systems with nonlinear delayed
perturbations, Appl. Math. Comput. 204 (2008), 490-495 (SCI).
[9] S. Pairote and V. N. Phat, Exponential stability of switched
linear systems with time-varying delay, Elect. J. Dif. Equations 59
(2007), 1-10.
[10] V. N. Phat, Constrained Control Problems of Discrete Processes,
World Scientific Publisher, Singapore-New Jersey-London, 1996.
[11] V. N. Phat, Introduction to Mathematical Control Theory, Hanoi
National University Publisher, Hanoi, 2001.
[12] V. N. Phat, J. Jiang, A. V. Savkin and I. Petersen, Robust
stabilization of linear uncertain discrete-time systems via a limited
communication channel, Systems and Control Letters 53 (2004), 347-360
(SCI).
[13] V. N. Phat and J. Jiang, Feedback stabilization of nonlinear
discrete-time systems via a digital communication channel, Int. J.
Math. Math. Sci. 1 (2005), 43-56.
[14] V. N. Phat and A. V. Savkin, Robust set-valued state estimation
for linear uncertain systems in Hilbert spaces, Nonl. Func. Anal.
Appl. 10 (2005), 285-298.
[15] V. N. Phat, N. M. Linh and T. D. Phuong, Sufficient conditions
for strong stability of non-linear time-varying control systems with
state delays, Acta Math. Vietnamica 30 (2005), 69-86.
[16] V. N. Phat, Robust stability and stabilizability of uncertain
linear hybrid systems with state delays, IEEE Trans. on CAS II 52
(2005), 94-98 (SCI).
[17] V. N. Phat and S. Pairote, Global stabilization of linear
periodically time-varying switched systems via matrix inequalities, J.
Control Theory Appl. 1 (2006), 26-31.
[18] V. N. Phat and P. Niamsup, Stabilization of linear non-autonomous
systems with norm bounded controls, J. Optim. Theory Appl. 131 (2006),
135-149 (SCI).
[19] V. N. Phat, Global stabilization for linear continuous
time-varying systems, Appl. Math. Comput. 175 (2006), 1730-1743
(SCI).
[20] V. N. Phat and P. T. Nam, Exponential stability and stabilization
of uncertain linear time-varying systems using parameter dependent
Lyapunov function, Int. J. Control 80 (2007), 1333-1341 (SCI).
[21] V. N. Phat, D. Q. Vinh and N. S. Bay, stabilization and control
for linear non- autonomous time-delay systems in Hilbert spaces via
Riccati equations, Adv. Nonl. Var. Ineq. 11 (2008), 75-86.