References

POSSIBILITY MEASURE, PRODUCT POSSIBILITY SPACE AND THE NOTION OF INDEPENDENCE


[1] D. Dubois and H. Prade, Possibility Theory: An Approach to Computerized Processing of Uncertainty, Plenum Press, New York, 1988.

[2] X. Gao and K. Iwamura, Fuzzy multi-criteria minimum spanning tree problem, Josai Information Sciences Researches 17 (2007), 1-11.

[3] K. Iwamura and B. Liu, A genetic algorithm for chance constrained programming, J. Inf. Optim. Sci. 17 (1996), 409-422.

[4] K. Iwamura and B. Liu, Dependent-chance integer programming applied to capital budgeting, J. Oper. Res. Soc. Japan 42 (1999), 117-127.

[5] K. Iwamura and M. Wen, Creating Finitely Many Independent Fuzzy Variables, Dept. Math., Josai University, 2005.

[6] K. Iwamura and M. Horiike, -Credibility, Proceedings of the Fifth International Conference on Information and Management Sciences, Chengdu, China, July 1-8 (2006), 310-315.

[7] K. Iwamura and M. Kageyama, From finitely many independent fuzzy sets to possibility-based fuzzy linear programming problems, J. Interdiscip. Math. 10 (2007), 757-766.

[8] K. Iwamura, M. Kageyama and S. Kitakubo, Existence Proof of Finitely Many Independent Fuzzy Vectors, Dept. Math., Josai University, 2007.

[9] X. Ji, K. Iwamura and Z. Shao, New models for shortest path problem with fuzzy arc lengths, Applied Mathematical Modelling 31 (2007), 259-269.

[10] J. Kacprzyk, Multistage Fuzzy Control, John Wiley & Sons, 1997.

[11] R. Liang and J. Gao, Dependent-chance programming models for capital budgeting in fuzzy environments, to appear in Tsinghua Science and Technology, Beijing.

[12] B. Liu and K. Iwamura, Chance constrained programming with fuzzy parameters, Fuzzy Sets and Systems 94(2) (1998), 227-237.

[13] B. Liu and K. Iwamura, A note on chance constrained programming with fuzzy coefficients, Fuzzy Sets and Systems 100(1-3) (1998), 229-233.

[14] B. Liu and A. O. Esogbue, Decision Criteria and Optimal Inventory Processes, Kluwer, Boston, 1999.

[15] B. Liu, Uncertain Programming, Wiley, New York, 1999.

[16] B. Liu and K. Iwamura, Fuzzy programming with fuzzy decisions and fuzzy simulation-based genetic algorithm, Fuzzy Sets and Systems 122(2) (2001), 253-262.

[17] B. Liu and Y.-K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on Fuzzy Systems 10(4) (2002), 445-450.

[18] B. Liu, Theory and Practice of Uncertain Programming, Physica-Verlag, Heidelberg, 2002.

[19] B. Liu, Uncertainty Theory: An Introduction to its Axiomatic Foundations, Springer-Verlag, Berlin, 2004.

[20] B. Liu, Uncertainty Theory, Second Edition, Springer-Verlag, Berlin, 2007.

[21] B. Liu, Fuzzy process, hybrid process, and uncertain process, Journal of Uncertain Systems 2 (2008), 3-16.

[22] T. Murofushi and M. Sugeno, An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure, Fuzzy Sets and Systems 29 (1989), 201-227.

[23] M. Sakawa, Fuzzy Sets and Interactive Multiobjective Optimization, Plenum Press, New York, 1993.

[24] G. Wang and K. Iwamura, Yield management with random fuzzy demand, Asian Information-Science-Life 1(3) (2002), 279-284.

[25] M. Wen and K. Iwamura, Fuzzy facility location-allocation problem under the Hurwicz criterion, Eur. J. Oper. Res. 184 (2008), 627-635.

[26] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.

[27] L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems 1 (1978), 3-28.

[28] H.-J. Zimmermann, Fuzzy Set Theory and its Applications, Kluwer Academic Publishers, 1991.