[1] M. F. Barnsley and S. Demko, Iterated function systems and the
global construction of fractals, Proc. Roy. Soc. London Ser. A 399
(1985), 243-275.
[2] M. F. Barnsley, Fractal functions and interpolation, Constr.
Approx. 2 (1986), 303-329.
[3] M. F. Barnsley, J. H. Elton and D. P. Hardin, Recurrent iterated
function systems, Constr. Approx. 5 (1989), 3-31.
[4] M. F. Barnsley, Fractals Everywhere, 2nd ed., Academic Press
Professional 1993.
[5] P. Bouboulis, V. Drakopoulos and S. Theodoridis, Image compression
using affine fractal interpolation surfaces, Fractals 14(4) (2006),
1-11.
[6] P. Bouboulis, L. Dalla and V. Drakopoulos, Construction of
recurrent bivariate fractal interpolation surfaces and computation of
their box-counting dimension, J. Approx. Theory 141 (2006), 99-117.
[7] P. Bouboulis, L. Dalla and V. Drakopoulos, Image compression using
recurrent bivariate fractal, Int. J. Bifurcation Chaos Appl. Sci. Eng.
141 (7) (2006), 1-9.
[8] P. Bouboulis and L. Dalla, A general construction of fractal
interpolation functions on grids of European J. Appl. Math. 18
(2007), 449-476.
[9] P. Bouboulis and L. Dalla, Fractal interpolation surfaces derived
from fractal interpolation functions, J. Math. Anal. Appl. 336 (2007),
919-936.
[10] O. I. Craciunescu, S. K. Das, J. M. Poulson and T. V. Samulski,
Three-dimensional tumor perfusion reconstruction using fractal
interpolation functions, IEEE Trans. Biom. Eng. 48(4) (2001),
462-473.
[11] L. Dalla, Bivariate fractal interpolation functions on grids,
Fractals 10 (2002), 53-58.
[12] G. Donovan, J. S. Geronimo, D. P. Hardin and P. R. Massopust,
Construction of orthogonal wavelets using fractal interpolation
functions, SIAM J. Math. Anal. 27 (1996), 1158-1192.
[13] J. S. Geronimo, D. P. Hardin and P. R. Massopust, Fractal
functions and wavelet expansions based on several scaling functions,
J. Approx. Theory 78 (1994), 373-401.
[14] D. P. Hardin, B. Kessler and P. R. Massopust, Multiresolution
analysis based on fractal functions, J. Approx. Theory 71 (1992),
104-120.
[15] G. Kim and A. Baros, Downscaling of remotely sensed soil moisture
with a modified fractal interpolation method using contraction mapping
and ancillary data, Remote Sensing of Environment 83(3) (2002),
400-413.
[16] P. Manousopoulos, V. Drakopoulos, T. Theoharis and P. Stavrou,
Effective Representation of 2D and 3D Data Using Fractal
Interpolation, Proceedings of the 2007 International Conference on
Cyberworlds, October 2007.
[17] P. Manousopoulos, V. Drakopoulos and T. Theoharis, Fractal active
shape models, in W. G. Kropatsch, M. Kampel and A. Hanbury (eds),
Computer Analysis of Images and Patterns, Springer-Verlag, Berlin and
Heidelberg, (2007), 645-652.
[18] D. S. Mazel and M. H. Hayes, Using iterated function systems to
model discrete sequences, IEEE Trans. Signal Process. 40 (1992),
1724-1734.
[19] D. S. Mazel, Representation of discrete sequences with
three-dimensional iterated function systems, IEEE Trans. Signal
Process. 42 (1994), 3269-3271.
[20] A. I. Pennand and M. H. Loew, Estimating fractal dimension with
fractal interpolation function models, IEEE Trans. Med. Imag. 16
(1997), 930-937.
[21] J. R. Price and M. H. Hayes, Resampling and reconstructing with
fractal interpolation functions, IEEE Signal Process. Letters 5
(1998), 228-230.
[22] Nailiang Zhao, Construction and application of fractal
interpolation surfaces, The Visual Computer 12 (1996), 132-146.