References

MODELLING DISCRETE SEQUENCES WITH FRACTAL INTERPOLATION FUNCTIONS OF HIGHER ORDER


[1] M. F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A 399 (1985), 243-275.

[2] M. F. Barnsley, Fractal functions and interpolation, Constr. Approx. 2 (1986), 303-329.

[3] M. F. Barnsley, J. H. Elton and D. P. Hardin, Recurrent iterated function systems, Constr. Approx. 5 (1989), 3-31.

[4] M. F. Barnsley, Fractals Everywhere, 2nd ed., Academic Press Professional 1993.

[5] P. Bouboulis, V. Drakopoulos and S. Theodoridis, Image compression using affine fractal interpolation surfaces, Fractals 14(4) (2006), 1-11.

[6] P. Bouboulis, L. Dalla and V. Drakopoulos, Construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension, J. Approx. Theory 141 (2006), 99-117.

[7] P. Bouboulis, L. Dalla and V. Drakopoulos, Image compression using recurrent bivariate fractal, Int. J. Bifurcation Chaos Appl. Sci. Eng. 141 (7) (2006), 1-9.

[8] P. Bouboulis and L. Dalla, A general construction of fractal interpolation functions on grids of European J. Appl. Math. 18 (2007), 449-476.

[9] P. Bouboulis and L. Dalla, Fractal interpolation surfaces derived from fractal interpolation functions, J. Math. Anal. Appl. 336 (2007), 919-936.

[10] O. I. Craciunescu, S. K. Das, J. M. Poulson and T. V. Samulski, Three-dimensional tumor perfusion reconstruction using fractal interpolation functions, IEEE Trans. Biom. Eng. 48(4) (2001), 462-473.

[11] L. Dalla, Bivariate fractal interpolation functions on grids, Fractals 10 (2002), 53-58.

[12] G. Donovan, J. S. Geronimo, D. P. Hardin and P. R. Massopust, Construction of orthogonal wavelets using fractal interpolation functions, SIAM J. Math. Anal. 27 (1996), 1158-1192.

[13] J. S. Geronimo, D. P. Hardin and P. R. Massopust, Fractal functions and wavelet expansions based on several scaling functions, J. Approx. Theory 78 (1994), 373-401.

[14] D. P. Hardin, B. Kessler and P. R. Massopust, Multiresolution analysis based on fractal functions, J. Approx. Theory 71 (1992), 104-120.

[15] G. Kim and A. Baros, Downscaling of remotely sensed soil moisture with a modified fractal interpolation method using contraction mapping and ancillary data, Remote Sensing of Environment 83(3) (2002), 400-413.

[16] P. Manousopoulos, V. Drakopoulos, T. Theoharis and P. Stavrou, Effective Representation of 2D and 3D Data Using Fractal Interpolation, Proceedings of the 2007 International Conference on Cyberworlds, October 2007.

[17] P. Manousopoulos, V. Drakopoulos and T. Theoharis, Fractal active shape models, in W. G. Kropatsch, M. Kampel and A. Hanbury (eds), Computer Analysis of Images and Patterns, Springer-Verlag, Berlin and Heidelberg, (2007), 645-652.

[18] D. S. Mazel and M. H. Hayes, Using iterated function systems to model discrete sequences, IEEE Trans. Signal Process. 40 (1992), 1724-1734.

[19] D. S. Mazel, Representation of discrete sequences with three-dimensional iterated function systems, IEEE Trans. Signal Process. 42 (1994), 3269-3271.

[20] A. I. Pennand and M. H. Loew, Estimating fractal dimension with fractal interpolation function models, IEEE Trans. Med. Imag. 16 (1997), 930-937.

[21] J. R. Price and M. H. Hayes, Resampling and reconstructing with fractal interpolation functions, IEEE Signal Process. Letters 5 (1998), 228-230.

[22] Nailiang Zhao, Construction and application of fractal interpolation surfaces, The Visual Computer 12 (1996), 132-146.