References

ANALYTIC VALUE FUNCTION IN MULTI-OBJECTIVE OPTIMIZATION


[1] L. V. Ahlfors, Complex Analysis, McGraw-Hill, Inc., (1979).

[2] A. E. Atakan, Stochastic convexity and dynamic programming, Economic Theory 2(2) (2003), 447-455.

[3] J. Bak and D. J. Newman, Complex Analysis, Springer-Verlag, New York, (1997).

[4] M. S. Bazara, J. J. Jarvis and H. D. Sherali, Linear Programming and Network Flows, Wiley, New York, (1990).

[5] M. S. Bazara, H. D. Sherali and C. M. Shelly, Non-Linear Programming Theory and Algorithms, Wiley, New York, (1993).

[6] H. Benson, An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem, Journal of Global Optimization 13(1) (1998), 1-24.

[7] A. Berman and A. Ben-Israel, Linear inequalities, Mathematical Programming and Matrix Theory 1(1) (1971), 291-300.

[8] M. Clerc and J. Kennedy, The particle Swarm-explosion, stability and convergence in multi-dimensional complex space, IEEE Transactions on Evolutionary Computation 6(1) (2002), 58-73.

[9] G. Debreu, Theory of Value, Yale University Press, New Haven, Connecticut, (1959).

[10] J. Figueira, S. Greco and M. Ehrgott, Multiple Criteria Decision Analysis: State of the Art Surveys, Springer’s International Series in Operations Research and Management Science, (2005).

[11] A. Gil, R. Marquez, M. G. Banos, M. G. Montoya and J. Gomez, A hybrid method for solving multi-objective global optimization problems, Journal of Global Optimization 38(2) (2007), 265-281.

[12] O. P. Jain and P. C. Saxena, A duality theorem for a special class of programming problems in complex space, Journal of Optimization Theory and Applications 16(3-4) (2005), 201-220.

[13] R. Keeney and H. Raiffa, Decisions with Multiple Objectives: Preferences and Tradeoffs, Cambridge University Press, Cambridge, GB, (1993).

[14] D. G. Luenberger, Optimization by Vector Space Methods, Wiley, New York, (1969).

[15] K. M. Miettinen, Nonlinear Multi-objective Optimization, Volume 12 of International Series in Operations Research and Management Science, Kluwer Academic Publishers, Dordrecht, (1999).

[16] H. Tuy, A. Migdalas and N. T. Hoai-Phuong, A novel approach to bilevel nonlinear programming, Journal of Global Optimization 38(4) (2007), 527-554.

[17] W. L. Winston, Introduction to Mathematical Programming, Wadworth, Inc., (1995).