References

MULTIPLE SOLUTIONS FOR ELLIPTIC EQUATIONS WITH DIFFERENT KINDS OF NONSTANDARD GROWTH CONDITIONS


[1] G. A. Afrouzi and S. Heidarkhani, Three solutions for a Dirichlet boundary value problem involving the p-Laplacian, Nonlinear Anal. 66 (2007), 2281-2288.

[2] G. A. Afrouzi and S. Heidarkhani, Three solutions for a quasilinear boundary value problem, Nonlinear Anal. 69(1-10) (2008),3330-3336.

[3] G. Bonanno and P. Candito, Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math. (Basel) 80 (2003), 424-429.

[4] G. Cordaro and G. Raob, Three solutions for a perturbed Dirichlet problem, Nonlinear Anal. 68 (2008), 3879-3883.

[5] D. E. Edmunds and J. Rákosník, Density of smooth functions in Proc. R. Soc. Lond. Ser. A 437 (1992), 229-236.

[6] D. E. Edmunds, J. Lang and A. Nekvinda, On norms, Proc. R. Soc. Lond. Ser. A 455 (1999), 219-225.

[7] D. E. Edmunds and J. Rákosník, Sobolev embedding with variable exponent, Studia Math. 143 (2000), 267-293.

[8] X. L. Fan and D. Zhao, On the generalized Orlicz-Sobolev space J. Gansu Educ. College 12(1) (1998), 1-6.

[9] X. L. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces J. Math. Anal. Appl. 262 (2001), 749-760.

[10] X. L. Fan and D. Zhao, On the spaces and J. Math. Anal. Appl. 263 (2001), 424-446.

[11] X. L. Fan and Q. H. Zhang, Existence of solutions for Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852.

[12] X. L. Fan and X. Y. Han, Existence and multiplicity of solutions for equations in Nonlinear Anal. 59 (2004), 173-188.

[13] O. Kováčik and J. Rákosník, On spaces and Czechoslovak Math. J. 41 (1991), 592-618.

[14] Qiao Liu, Existence of three solutions for equations, Nonlinear Anal. 68 (2008), 2119-2127.

[15] Mihai Mihailescu, Existence and multiplicity of solutions for a Neumann problem involving the -Laplace operator, Nonlinear Anal. 67 (2007), 1419-1425.

[16] M. Mihâilescu and V. Radulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A 462 (2006), 2625-2641.

[17] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034, Springer, Berlin, (1983).

[18] B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problem, Math. Comput. Modelling 32 (2000), 1485-1494.

[19] B. Ricceri, A three critical points theorem revisited, Nonlinear Anal. 70(9) (2009), 3084-3089.